enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Integer partition - Wikipedia

    en.wikipedia.org/wiki/Integer_partition

    Such a partition is called a partition with distinct parts. If we count the partitions of 8 with distinct parts, we also obtain 6: 8; 7 + 1; 6 + 2; 5 + 3; 5 + 2 + 1; 4 + 3 + 1; This is a general property. For each positive number, the number of partitions with odd parts equals the number of partitions with distinct parts, denoted by q(n).

  3. Triangle of partition numbers - Wikipedia

    en.wikipedia.org/wiki/Triangle_of_partition_numbers

    Download QR code; Print/export Download as PDF; Printable version; In other projects ... The values of these constants are the partition numbers 1, 1, 2, 3, 5, 7 ...

  4. Partition function (number theory) - Wikipedia

    en.wikipedia.org/wiki/Partition_function_(number...

    The values (), …, of the partition function (1, 2, 3, 5, 7, 11, 15, and 22) can be determined by counting the Young diagrams for the partitions of the numbers from 1 to 8. In number theory, the partition function p(n) represents the number of possible partitions of a non-negative integer n.

  5. Partition problem - Wikipedia

    en.wikipedia.org/wiki/Partition_problem

    In number theory and computer science, the partition problem, or number partitioning, [1] is the task of deciding whether a given multiset S of positive integers can be partitioned into two subsets S 1 and S 2 such that the sum of the numbers in S 1 equals the sum of the numbers in S 2.

  6. Quotition and partition - Wikipedia

    en.wikipedia.org/wiki/Quotition_and_partition

    If there is a remainder in solving a partition problem, the parts will end up with unequal sizes. For example, if 52 cards are dealt out to 5 players, then 3 of the players will receive 10 cards each, and 2 of the players will receive 11 cards each, since 52 5 = 10 + 2 5 {\textstyle {\frac {52}{5}}=10+{\frac {2}{5}}} .

  7. Bell number - Wikipedia

    en.wikipedia.org/wiki/Bell_number

    The Stirling number {} is the number of ways to partition a set of cardinality n into exactly k nonempty subsets. Thus, in the equation relating the Bell numbers to the Stirling numbers, each partition counted on the left hand side of the equation is counted in exactly one of the terms of the sum on the right hand side, the one for which k is ...

  8. Stirling numbers of the second kind - Wikipedia

    en.wikipedia.org/wiki/Stirling_numbers_of_the...

    An r-associated Stirling number of the second kind is the number of ways to partition a set of n objects into k subsets, with each subset containing at least r elements. [17] It is denoted by S r ( n , k ) {\displaystyle S_{r}(n,k)} and obeys the recurrence relation

  9. Ramanujan's congruences - Wikipedia

    en.wikipedia.org/wiki/Ramanujan's_congruences

    In plain words, e.g., the first congruence means that If a number is 4 more than a multiple of 5, i.e. it is in the sequence 4, 9, 14, 19, 24, 29, . . . then the number of its partitions is a multiple of 5. Later other congruences of this type were discovered, for numbers and for Tau-functions.