Search results
Results from the WOW.Com Content Network
Nocedal is well-known for his research in nonlinear optimization, particularly for his work on L-BFGS [4] [5] and his textbook Numerical Optimization. [6] In 2001, Nocedal co-founded Ziena Optimization Inc. and co-developed the KNITRO software package. [7] Nocedal was a chief scientist at Ziena Optimization Inc. from 2002 to 2012 before the ...
The geometric interpretation of Newton's method is that at each iteration, it amounts to the fitting of a parabola to the graph of () at the trial value , having the same slope and curvature as the graph at that point, and then proceeding to the maximum or minimum of that parabola (in higher dimensions, this may also be a saddle point), see below.
Sequential quadratic programming (SQP) is an iterative method for constrained nonlinear optimization which may be considered a quasi-Newton method.SQP methods are used on mathematical problems for which the objective function and the constraints are twice continuously differentiable, but not necessarily convex.
It is a direct search method (based on function comparison) and is often applied to nonlinear optimization problems for which derivatives may not be known. However, the Nelder–Mead technique is a heuristic search method that can converge to non-stationary points [ 1 ] on problems that can be solved by alternative methods.
For large-scale optimization, the Gauss–Newton method is of special interest because it is often (though certainly not always) true that the matrix is more sparse than the approximate Hessian . In such cases, the step calculation itself will typically need to be done with an approximate iterative method appropriate for large and sparse ...
The optimization of portfolios is an example of multi-objective optimization in economics. Since the 1970s, economists have modeled dynamic decisions over time using control theory . [ 14 ] For example, dynamic search models are used to study labor-market behavior . [ 15 ]
In numerical analysis, a quasi-Newton method is an iterative numerical method used either to find zeroes or to find local maxima and minima of functions via an iterative recurrence formula much like the one for Newton's method, except using approximations of the derivatives of the functions in place of exact derivatives.
The principal reason for imposing the Wolfe conditions in an optimization algorithm where + = + is to ensure convergence of the gradient to zero. In particular, if the cosine of the angle between and the gradient, = ‖ ‖ ‖ ‖ is bounded away from zero and the i) and ii) conditions hold, then ().