Ad
related to: geometric series simplification problems practiceEducation.com is great and resourceful - MrsChettyLife
- Activities & Crafts
Stay creative & active with indoor
& outdoor activities for kids.
- Printable Workbooks
Download & print 300+ workbooks
written & reviewed by teachers.
- Lesson Plans
Engage your students with our
detailed lesson plans for K-8.
- Digital Games
Turn study time into an adventure
with fun challenges & characters.
- Activities & Crafts
Search results
Results from the WOW.Com Content Network
The geometric series is an infinite series derived from a special type of sequence called a geometric progression.This means that it is the sum of infinitely many terms of geometric progression: starting from the initial term , and the next one being the initial term multiplied by a constant number known as the common ratio .
An infinite series of any rational function of can be reduced to a finite series of polygamma functions, by use of partial fraction decomposition, [8] as explained here. This fact can also be applied to finite series of rational functions, allowing the result to be computed in constant time even when the series contains a large number of terms.
This is a particular case of the sum of the reciprocals of any geometric series where the first term and the common ratio are positive integers. If the first term is a and the common ratio is r then the sum is r / a (r − 1) . The Kempner series is the sum of the reciprocals of all positive integers not containing the digit "9" in base 10.
A geometric progression, also known as a geometric sequence, is a mathematical sequence of non-zero numbers where each term after the first is found by multiplying the previous one by a fixed number called the common ratio. For example, the sequence 2, 6, 18, 54, ... is a geometric progression with a common ratio of 3.
The number of points (n), chords (c) and regions (r G) for first 6 terms of Moser's circle problem. In geometry, the problem of dividing a circle into areas by means of an inscribed polygon with n sides in such a way as to maximise the number of areas created by the edges and diagonals, sometimes called Moser's circle problem (named after Leo Moser), has a solution by an inductive method.
In mathematics, a series is, roughly speaking, an addition of infinitely many terms, one after the other. [1] The study of series is a major part of calculus and its generalization, mathematical analysis. Series are used in most areas of mathematics, even for studying finite structures in combinatorics through generating functions.
Given a series a 0 + a 1 + a 2 + · · ·, one forms a new series a 0 + a 1 x + a 2 x 2 + · · ·. If the latter series converges for 0 < x < 1 to a function with a limit as x tends to 1, then this limit is called the Abel sum of the original series, after Abel's theorem which guarantees that the procedure is consistent with ordinary summation.
Simplifying a piecewise linear curve with the Douglas–Peucker algorithm. The starting curve is an ordered set of points or lines and the distance dimension ε > 0. The algorithm recursively divides the line. Initially it is given all the points between the first and last point. It automatically marks the first and last point to be kept.
Ad
related to: geometric series simplification problems practiceEducation.com is great and resourceful - MrsChettyLife