enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Voronoi diagram - Wikipedia

    en.wikipedia.org/wiki/Voronoi_diagram

    Let be a metric space with distance function .Let be a set of indices and let () be a tuple (indexed collection) of nonempty subsets (the sites) in the space .The Voronoi cell, or Voronoi region, , associated with the site is the set of all points in whose distance to is not greater than their distance to the other sites , where is any index different from .

  3. Mathematical diagram - Wikipedia

    en.wikipedia.org/wiki/Mathematical_diagram

    A Voronoi diagram is a special kind of decomposition of a metric space determined by distances to a specified discrete set of objects in the space, e.g., by a discrete set of points. This diagram is named after Georgy Voronoi, also called a Voronoi tessellation, a Voronoi decomposition, or a Dirichlet tessellation after Peter Gustav Lejeune ...

  4. Weighted Voronoi diagram - Wikipedia

    en.wikipedia.org/wiki/Weighted_Voronoi_diagram

    The Voronoi cells in a weighted Voronoi diagram are defined in terms of a distance function. The distance function may specify the usual Euclidean distance, or may be some other, special distance function. In weighted Voronoi diagrams, each site has a weight that influences the distance computation.

  5. Nearest-neighbor interpolation - Wikipedia

    en.wikipedia.org/wiki/Nearest-neighbor_interpolation

    For a given set of points in space, a Voronoi diagram is a decomposition of space into cells, one for each given point, so that anywhere in space, the closest given point is inside the cell. This is equivalent to nearest neighbor interpolation, by assigning the function value at the given point to all the points inside the cell. [3]

  6. Wigner–Seitz cell - Wikipedia

    en.wikipedia.org/wiki/Wigner–Seitz_cell

    The general mathematical concept embodied in a Wigner–Seitz cell is more commonly called a Voronoi cell, and the partition of the plane into these cells for a given set of point sites is known as a Voronoi diagram. The construction process for the Wigner–Seitz cell of a hexagonal lattice. The cell may be chosen by first picking a lattice ...

  7. Natural element method - Wikipedia

    en.wikipedia.org/wiki/Natural_element_method

    20 points and their Voronoi cells. The natural element method (NEM) [1] [2] [3] is a meshless method to solve partial differential equation, where the elements do not have a predefined shape as in the finite element method, but depend on the geometry. [4] [5] [6] A Voronoi diagram partitioning the space is used to create each of these elements.

  8. Voronoi pole - Wikipedia

    en.wikipedia.org/wiki/Voronoi_pole

    Let be the Voronoi diagram for a set of sites , and let be the Voronoi cell of corresponding to a site . If V p {\displaystyle V_{p}} is bounded, then its positive pole is the vertex of the boundary of V p {\displaystyle V_{p}} that has maximal distance to the point p {\displaystyle p} .

  9. Worley noise - Wikipedia

    en.wikipedia.org/wiki/Worley_noise

    Worley noise, also called Voronoi noise and cellular noise, is a noise function introduced by Steven Worley in 1996. Worley noise is an extension of the Voronoi diagram that outputs a real value at a given coordinate that corresponds to the Distance of the nth nearest seed (usually n=1) and the seeds are distributed evenly through the region.