Search results
Results from the WOW.Com Content Network
Subgroup analysis refers to repeating the analysis of a study within subgroups of subjects defined by a subgrouping variable. For example: smoking status defining two subgroups: smokers and non-smokers).
A proper subgroup of a group G is a subgroup H which is a proper subset of G (that is, H ≠ G). This is often represented notationally by H < G, read as "H is a proper subgroup of G". Some authors also exclude the trivial group from being proper (that is, H ≠ {e} ). [2] [3] If H is a subgroup of G, then G is sometimes called an overgroup of H.
Since the normal subgroup is a subgroup of H, its index in G must be n times its index inside H. Its index in G must also correspond to a subgroup of the symmetric group S n, the group of permutations of n objects. So for example if n is 5, the index cannot be 15 even though this divides 5!, because there is no subgroup of order 15 in S 5.
The reason is that for such a group G, the Frattini subgroup of G contains the commutator subgroup of G and hence the rank of G is equal to the rank of the abelianization of G. [14] The rank problem is undecidable for word hyperbolic groups. [15] The rank problem is decidable for torsion-free Kleinian groups. [16]
Subgroup growth studies these functions, their interplay, and the characterization of group theoretical properties in terms of these functions. The theory was motivated by the desire to enumerate finite groups of given order, and the analogy with Mikhail Gromov 's notion of word growth .
The minimum and the maximum value are the first and last order statistics (often denoted X (1) and X (n) respectively, for a sample size of n). If the sample has outliers, they necessarily include the sample maximum or sample minimum, or both, depending on whether they are extremely high or low. However, the sample maximum and minimum need not ...
Subgroup series can simplify the study of a group to the study of simpler subgroups and their relations, and several subgroup series can be invariantly defined and are important invariants of groups. A subgroup series is used in the subgroup method. Subgroup series are a special example of the use of filtrations in abstract algebra.
The first quartile (Q 1) is defined as the 25th percentile where lowest 25% data is below this point. It is also known as the lower quartile. The second quartile (Q 2) is the median of a data set; thus 50% of the data lies below this point. The third quartile (Q 3) is the 75th percentile where