Search results
Results from the WOW.Com Content Network
More generally, every integral domain is a reduced ring since a nilpotent element is a fortiori a zero-divisor. On the other hand, not every reduced ring is an integral domain; for example, the ring Z[x, y]/(xy) contains x + (xy) and y + (xy) as zero-divisors, but no non-zero nilpotent elements.
1. In an integral domain R, [clarification needed] an element a is called a divisor of the element b (and we say a divides b) if there exists an element x in R with ax = b. 2. An element r of R is a left zero divisor if there exists a nonzero element x in R such that rx = 0 and a right zero divisor or if there exists a nonzero element y in R ...
This definition can be applied in particular to square matrices.The matrix = is nilpotent because =.See nilpotent matrix for more.. In the factor ring /, the equivalence class of 3 is nilpotent because 3 2 is congruent to 0 modulo 9.
If one interprets the definition of divisor literally, every a is a divisor of 0, since one can take x = 0. Because of this, it is traditional to abuse terminology by making an exception for zero divisors: one calls an element a in a commutative ring a zero divisor if there exists a nonzero x such that ax = 0. [2]
In mathematics, specifically in ring theory, a nilpotent algebra over a commutative ring is an algebra over a commutative ring, in which for some positive integer n every product containing at least n elements of the algebra is zero.
In linear algebra, a nilpotent matrix is a square matrix N such that = for some positive integer.The smallest such is called the index of , [1] sometimes the degree of .. More generally, a nilpotent transformation is a linear transformation of a vector space such that = for some positive integer (and thus, = for all ).
For a general ring with unity R, the Jacobson radical J(R) is defined as the ideal of all elements r ∈ R such that rM = 0 whenever M is a simple R-module.That is, = {=}. This is equivalent to the definition in the commutative case for a commutative ring R because the simple modules over a commutative ring are of the form R / for some maximal ideal of R, and the annihilators of R / in R are ...
Let X be the subvariety of the four-dimensional affine plane, with coordinates x,y,z,w, generated by y 2-x 3 and x 4 +xz 2-w 3. The canonical desingularization of the ideal with these generators would blow up the center C 0 given by x=y=z=w=0. The transform of the ideal in the x-chart if generated by x-y 2 and y 2 (y 2 +z 2-w 3).