Search results
Results from the WOW.Com Content Network
Intuitionistic logic is related by duality to a paraconsistent logic known as Brazilian, anti-intuitionistic or dual-intuitionistic logic. [13] The subsystem of intuitionistic logic with the FALSE (resp. NOT-2) axiom removed is known as minimal logic and some differences have been elaborated on above.
In mathematical logic, the Brouwer–Heyting–Kolmogorov interpretation, or BHK interpretation, of intuitionistic logic was proposed by L. E. J. Brouwer and Arend Heyting, and independently by Andrey Kolmogorov. It is also sometimes called the realizability interpretation, because of the connection with the realizability theory of Stephen ...
This principle was established by Brouwer in 1928 [1] using intuitionistic principles, and can also be proven using Church's thesis. The analogous property in classical analysis is the fact that every continuous function from the continuum to {0,1} is constant.
The fundamental distinguishing characteristic of intuitionism is its interpretation of what it means for a mathematical statement to be true. In Brouwer's original intuitionism, the truth of a mathematical statement is a subjective claim: a mathematical statement corresponds to a mental construction, and a mathematician can assert the truth of a statement only by verifying the validity of that ...
For example, Gödel–Dummett logic has a simple semantic characterization in terms of total orders. Specific intermediate logics may be given by semantical description. Others are often given by adding one or more axioms to Intuitionistic logic (usually denoted as intuitionistic propositional calculus IPC, but also Int, IL or H) Examples include:
Jankov logic (KC) is an extension of intuitionistic logic, which can be axiomatized by the intuitionistic axiom system plus the axiom [13] ¬ A ∨ ¬ ¬ A . {\displaystyle \neg A\lor \neg \neg A.} Gödel–Dummett logic (LC) can be axiomatized over intuitionistic logic by adding the axiom [ 13 ]
A second-order propositional logic is a propositional logic extended with quantification over propositions. A special case are the logics that allow second-order Boolean propositions , where quantifiers may range either just over the Boolean truth values , or over the Boolean-valued truth functions .
Type theory has a natural deduction presentation in terms of formation, introduction and elimination rules; in fact, the reader can easily reconstruct what is known as simple type theory from the previous sections. The difference between logic and type theory is primarily a shift of focus from the types (propositions) to the programs (proofs).