Search results
Results from the WOW.Com Content Network
In computer science, smoothsort is a comparison-based sorting algorithm.A variant of heapsort, it was invented and published by Edsger Dijkstra in 1981. [1] Like heapsort, smoothsort is an in-place algorithm with an upper bound of O(n log n) operations (see big O notation), [2] but it is not a stable sort.
Sorting algorithms are prevalent in introductory computer science classes, where the abundance of algorithms for the problem provides a gentle introduction to a variety of core algorithm concepts, such as big O notation, divide-and-conquer algorithms, data structures such as heaps and binary trees, randomized algorithms, best, worst and average ...
Such a component or property is called a sort key. For example, the items are books, the sort key is the title, subject or author, and the order is alphabetical. A new sort key can be created from two or more sort keys by lexicographical order. The first is then called the primary sort key, the second the secondary sort key, etc.
The difference between pigeonhole sort and counting sort is that in counting sort, the auxiliary array does not contain lists of input elements, only counts: 3: 1; 4: 0; 5: 2; 6: 0; 7: 0; 8: 1; For arrays where N is much larger than n, bucket sort is a generalization that is more efficient in space and time.
A Merge sort breaks the data up into chunks, sorts the chunks by some other algorithm (maybe bubblesort or Quick sort) and then recombines the chunks two by two so that each recombined chunk is in order. This approach minimises the number or reads and writes of data-chunks from disk, and is a popular external sort method.
However, the fundamental difference between the two algorithms is that insertion sort scans backwards from the current key, while selection sort scans forwards. This results in selection sort making the first k elements the k smallest elements of the unsorted input, while in insertion sort they are simply the first k elements of the input.
The simplicity of the counting sort algorithm and its use of the easily parallelizable prefix sum primitive also make it usable in more fine-grained parallel algorithms. [7] As described, counting sort is not an in-place algorithm; even disregarding the count array, it needs separate input and output arrays. It is possible to modify the ...
This order is usually determined by the order in which the elements are added to the structure, but the elements can be rearranged in some contexts, such as sorting a list. For a structure that isn't ordered, on the other hand, no assumptions can be made about the ordering of the elements (although a physical implementation of these data types ...