enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Bivariate analysis - Wikipedia

    en.wikipedia.org/wiki/Bivariate_analysis

    Regression is a statistical technique used to help investigate how variation in one or more variables predicts or explains variation in another variable. Bivariate regression aims to identify the equation representing the optimal line that defines the relationship between two variables based on a particular data set.

  3. Bivariate data - Wikipedia

    en.wikipedia.org/wiki/Bivariate_data

    In some instances of bivariate data, it is determined that one variable influences or determines the second variable, and the terms dependent and independent variables are used to distinguish between the two types of variables. In the above example, the length of a person's legs is the independent variable.

  4. Functional correlation - Wikipedia

    en.wikipedia.org/wiki/Functional_correlation

    In statistics, functional correlation is a dimensionality reduction technique used to quantify the correlation and dependence between two variables when the data is functional. Several approaches have been developed to quantify the relation between two functional variables.

  5. Correlation coefficient - Wikipedia

    en.wikipedia.org/wiki/Correlation_coefficient

    A correlation coefficient is a numerical measure of some type of linear correlation, meaning a statistical relationship between two variables. [a] The variables may be two columns of a given data set of observations, often called a sample, or two components of a multivariate random variable with a known distribution.

  6. Correlation - Wikipedia

    en.wikipedia.org/wiki/Correlation

    The second one (top right) is not distributed normally; while an obvious relationship between the two variables can be observed, it is not linear. In this case the Pearson correlation coefficient does not indicate that there is an exact functional relationship: only the extent to which that relationship can be approximated by a linear relationship.

  7. Covariance and correlation - Wikipedia

    en.wikipedia.org/wiki/Covariance_and_correlation

    With any number of random variables in excess of 1, the variables can be stacked into a random vector whose i th element is the i th random variable. Then the variances and covariances can be placed in a covariance matrix, in which the (i, j) element is the covariance between the i th random variable and the j th one.

  8. Settling - Wikipedia

    en.wikipedia.org/wiki/Settling

    Settling pond for iron particles at water works. Settling is the process by which particulates move towards the bottom of a liquid and form a sediment.Particles that experience a force, either due to gravity or due to centrifugal motion will tend to move in a uniform manner in the direction exerted by that force.

  9. Distance correlation - Wikipedia

    en.wikipedia.org/wiki/Distance_correlation

    The classical measure of dependence, the Pearson correlation coefficient, [1] is mainly sensitive to a linear relationship between two variables. Distance correlation was introduced in 2005 by Gábor J. Székely in several lectures to address this deficiency of Pearson's correlation, namely that it can easily be zero for dependent variables.