enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Genus (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Genus_(mathematics)

    The non-orientable genus, demigenus, or Euler genus of a connected, non-orientable closed surface is a positive integer representing the number of cross-caps attached to a sphere. Alternatively, it can be defined for a closed surface in terms of the Euler characteristic χ, via the relationship χ = 2 − k , where k is the non-orientable genus.

  3. Genus g surface - Wikipedia

    en.wikipedia.org/wiki/Genus_g_surface

    The genus (sometimes called the demigenus or Euler genus) of a connected non-orientable closed surface is a positive integer representing the number of cross-caps attached to a sphere. Alternatively, it can be defined for a closed surface in terms of the Euler characteristic χ, via the relationship χ = 2 − g, where g is the non-orientable ...

  4. File:Lagrangian vs Eulerian.webm - Wikipedia

    en.wikipedia.org/wiki/File:Lagrangian_vs_Euler...

    You are free: to share – to copy, distribute and transmit the work; to remix – to adapt the work; Under the following conditions: attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses ...

  5. Lagrangian and Eulerian specification of the flow field

    en.wikipedia.org/wiki/Lagrangian_and_Eulerian...

    File:Lagrangian vs Eulerian [further explanation needed] Eulerian perspective of fluid velocity versus Lagrangian depiction of strain. In classical field theories , the Lagrangian specification of the flow field is a way of looking at fluid motion where the observer follows an individual fluid parcel as it moves through space and time.

  6. Mechanica - Wikipedia

    en.wikipedia.org/wiki/Mechanica

    Euler both developed the techniques of analysis and applied them to numerous problems in mechanics, [1] notably in later publications the calculus of variations. [2] Euler's laws of motion expressed scientific laws of Galileo and Newton in terms of points in reference frames and coordinate systems making them useful for calculation when the ...

  7. Contributions of Leonhard Euler to mathematics - Wikipedia

    en.wikipedia.org/wiki/Contributions_of_Leonhard...

    Euler's great interest in number theory can be traced to the influence of his friend in the St. Peterburg Academy, Christian Goldbach. A lot of his early work on number theory was based on the works of Pierre de Fermat, and developed some of Fermat's ideas. One focus of Euler's work was to link the nature of prime distribution with ideas in ...

  8. Graph Theory, 1736–1936 - Wikipedia

    en.wikipedia.org/wiki/Graph_Theory,_1736–1936

    First edition. Graph Theory, 1736–1936 is a book in the history of mathematics on graph theory.It focuses on the foundational documents of the field, beginning with the 1736 paper of Leonhard Euler on the Seven Bridges of Königsberg and ending with the first textbook on the subject, published in 1936 by Dénes KÅ‘nig.

  9. Catenoid - Wikipedia

    en.wikipedia.org/wiki/Catenoid

    It was formally described in 1744 by the mathematician Leonhard Euler. Soap film attached to twin circular rings will take the shape of a catenoid. [ 2 ] Because they are members of the same associate family of surfaces, a catenoid can be bent into a portion of a helicoid , and vice versa.