Search results
Results from the WOW.Com Content Network
Ferromagnetism is an unusual property that occurs in only a few substances. The common ones are the transition metals iron, nickel, and cobalt, as well as their alloys and alloys of rare-earth metals. It is a property not just of the chemical make-up of a material, but of its crystalline structure and microstructure.
The three elements above the platinum group in the periodic table (iron, nickel and cobalt) are all ferromagnetic; these, together with the lanthanide element gadolinium (at temperatures below 20 °C), [4] are the only known transition metals that display ferromagnetism near room temperature.
Late transition metals are on the right side of the d-block, from group 8 to 11 (or 12, if they are counted as transition metals). In an alternative three-way scheme, groups 3, 4, and 5 are classified as early transition metals, 6, 7, and 8 are classified as middle transition metals, and 9, 10, and 11 (and sometimes group 12) are classified as ...
In solid-state physics, the kagome metal or kagome magnet is a type of ferromagnetic quantum material. The atomic lattice in a kagome magnet has layered overlapping triangles and large hexagonal voids, akin to the kagome pattern in traditional Japanese basket-weaving .
Metals. Above the Curie temperature, the atoms are excited, and the spin orientations become randomized [9] but can be realigned by an applied field, i.e., the material becomes paramagnetic. Below the Curie temperature, the intrinsic structure has undergone a phase transition, [16] the atoms are ordered, and the material is ferromagnetic. [12]
Nickel is a silvery-white metal with a slight golden tinge that takes a high polish. It is one of only four elements that are ferromagnetic at or near room temperature; the others are iron, cobalt and gadolinium. Its Curie temperature is 355 °C (671 °F), meaning that bulk nickel is non-magnetic above this temperature.
This compensation point is observed easily in garnets and rare-earth–transition-metal alloys (RE-TM). Furthermore, ferrimagnets may also have an angular momentum compensation point, at which the net angular momentum vanishes. This compensation point is crucial for achieving fast magnetization reversal in magnetic-memory devices.
In elements that reduce the gamma phase range, the alpha-gamma phase boundary connects with the gamma-delta phase boundary, forming what is usually called the Gamma loop. Adding Gamma loop additives keeps the iron in a body-centered cubic structure and prevents the steel from suffering phase transition to other solid states.