Search results
Results from the WOW.Com Content Network
Depth-first search (DFS) is an algorithm for traversing or searching tree or graph data structures. The algorithm starts at the root node (selecting some arbitrary node as the root node in the case of a graph) and explores as far as possible along each branch before backtracking.
32-bit compilers emit, respectively: _f _g@4 @h@4 In the stdcall and fastcall mangling schemes, the function is encoded as _name@X and @name@X respectively, where X is the number of bytes, in decimal, of the argument(s) in the parameter list (including those passed in registers, for fastcall).
Breadth-first search (BFS) is an algorithm for searching a tree data structure for a node that satisfies a given property. It starts at the tree root and explores all nodes at the present depth prior to moving on to the nodes at the next depth level.
IDDFS achieves breadth-first search's completeness (when the branching factor is finite) using depth-first search's space-efficiency. If a solution exists, it will find a solution path with the fewest arcs. [2] Iterative deepening visits states multiple times, and it may seem wasteful.
A breadth-first search (BFS) is another technique for traversing a finite graph. BFS visits the sibling vertices before visiting the child vertices, and a queue is used in the search process. This algorithm is often used to find the shortest path from one vertex to another.
Best-first search is a class of search algorithms which explores a graph by expanding the most promising node chosen according to a specified rule.. Judea Pearl described best-first search as estimating the promise of node n by a "heuristic evaluation function () which, in general, may depend on the description of n, the description of the goal, the information gathered by the search up to ...
Also (as with structs), the C++ enum keyword is combined with a typedef, so that instead of naming the type enum name, simply name it name. This can be simulated in C using a typedef: typedef enum {Value1, Value2} name; C++11 also provides a second kind of enumeration, called a scoped enumeration. These are type-safe: the enumerators are not ...
A simple alternative to the above algorithm uses chain decompositions, which are special ear decompositions depending on DFS-trees. [3] Chain decompositions can be computed in linear time by this traversing rule. Let C be a chain decomposition of G. Then G is 2-vertex-connected if and only if G has minimum degree 2 and C 1 is the only cycle in C.