Search results
Results from the WOW.Com Content Network
A transition without consuming an input symbol is called an ε-transition and is represented in state diagrams by an arrow labeled "ε". ε-transitions provide a convenient way of modeling systems whose current states are not precisely known: i.e., if we are modeling a system and it is not clear whether the current state (after processing some ...
In an abstract sense relating to a Petri net diagram, a transition of a Petri net may fire if it is enabled, i.e. there are sufficient tokens in all of its input places; when the transition fires, it consumes the required input tokens, and creates tokens in its output places. A firing is atomic, i.e. a single non-interruptible step.
The figure illustrates a deterministic finite automaton using a state diagram. In this example automaton, there are three states: S 0, S 1, and S 2 (denoted graphically by circles). The automaton takes a finite sequence of 0s and 1s as input. For each state, there is a transition arrow leading out to a next state for both 0 and 1.
State diagram for a turnstile A turnstile. An example of a simple mechanism that can be modeled by a state machine is a turnstile. [4] [5] A turnstile, used to control access to subways and amusement park rides, is a gate with three rotating arms at waist height, one across the entryway.
Token-based replay technique is a conformance checking algorithm [1] that checks how well a process conforms with its model by replaying each trace on the model (in Petri net notation). [2]
VME bus controller. Block-diagram and timing diagrams (a) and the corresponding STGs (b). This example originates from. [1] More formally, an STG is a type of an interpreted (or labelled) Petri net whose transitions are labelled with the names of changes in the values of signals (cf. signal transitions).
In UML, states are represented as rounded rectangles labeled with state names. The transitions, represented as arrows, are labeled with the triggering events followed optionally by the list of executed actions. The initial transition originates from the solid circle and specifies the default state when the system first begins. Every state ...
Now if the machine is in the state S 1 and receives an input of 0 (first column), the machine will transition to the state S 2. In the state diagram, the former is denoted by the arrow looping from S 1 to S 1 labeled with a 1, and the latter is denoted by the arrow from S 1 to S 2 labeled with a 0.