Search results
Results from the WOW.Com Content Network
Evapotranspiration (ET) refers to the combined processes which move water from the Earth's surface (open water and ice surfaces, bare soil and vegetation) into the atmosphere. [ 2 ] : 2908 It covers both water evaporation (movement of water to the air directly from soil, canopies , and water bodies) and transpiration (evaporation that occurs ...
It is a steel container 1.83 m (6 ft) on a side and 0.61 m (2 ft) deep, sunk into the ground with an above-ground rim of 7.6–10 centimetres (3.0–3.9 in) and is painted black internally. Its evaporation rate is lower than the Class A pan and conversion factors must be used. [8]
Two major factors influence the rate of water flow from the soil to the roots: the hydraulic conductivity of the soil and the magnitude of the pressure gradient through the soil. Both of these factors influence the rate of bulk flow of water moving from the roots to the stomatal pores in the leaves via the xylem. [7]
In hydrology, evaporation and transpiration (which involves evaporation within plant stomata) are collectively termed evapotranspiration. Evaporation of water occurs when the surface of the liquid is exposed, allowing molecules to escape and form water vapor; this vapor can then rise up and form clouds.
Monthly estimated potential evapotranspiration and measured pan evaporation for two locations in Hawaii, Hilo and Pahala. Potential evapotranspiration is usually measured indirectly, from other climatic factors, but also depends on the surface type, such as free water (for lakes and oceans), the soil type for bare soil, and also the density and diversity of vegetation.
The movement of heat embodied in water vapour as it leaves vegetation is not well understood given the complexity of the dynamics. [11] While the movement of water into the atmosphere through evapotranspiration and consequent cooling is broadly accepted, the movement of water further into the atmosphere is more contentious. [12]
The Penman equation describes evaporation (E) from an open water surface, and was developed by Howard Penman in 1948. Penman's equation requires daily mean temperature, wind speed, air pressure, and solar radiation to predict E. Simpler Hydrometeorological equations continue to be used where obtaining such data is impractical, to give comparable results within specific contexts, e.g. humid vs ...
Grah and Wilson in 1944 did sprinkling experiments where they watered plants to see how much of the intercepted is kept after watering stops. Trees like Norway maple and a small-leaved lime have an interception of approximately 38% of the gross precipitation in temperate climate.