enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Jordan's lemma - Wikipedia

    en.wikipedia.org/wiki/Jordan's_lemma

    The path C is the concatenation of the paths C 1 and C 2.. Jordan's lemma yields a simple way to calculate the integral along the real axis of functions f(z) = e i a z g(z) holomorphic on the upper half-plane and continuous on the closed upper half-plane, except possibly at a finite number of non-real points z 1, z 2, …, z n.

  3. Integration by substitution - Wikipedia

    en.wikipedia.org/wiki/Integration_by_substitution

    When evaluating definite integrals by substitution, one may calculate the antiderivative fully first, then apply the boundary conditions. In that case, there is no need to transform the boundary terms. Alternatively, one may fully evaluate the indefinite integral first then apply the boundary conditions. This becomes especially handy when ...

  4. Contour integration - Wikipedia

    en.wikipedia.org/wiki/Contour_integration

    To calculate this integral, one uses the function = (⁡ +) and the branch of the logarithm corresponding to −π < arg z ≤ π. We will calculate the integral of f(z) along the keyhole contour shown at right. As it turns out this integral is a multiple of the initial integral that we wish to calculate and by the Cauchy residue theorem we have

  5. Numerical integration - Wikipedia

    en.wikipedia.org/wiki/Numerical_integration

    To compute integrals in multiple dimensions, one approach is to phrase the multiple integral as repeated one-dimensional integrals by applying Fubini's theorem (the tensor product rule). This approach requires the function evaluations to grow exponentially as the number of dimensions increases.

  6. Multiple integral - Wikipedia

    en.wikipedia.org/wiki/Multiple_integral

    Just as the definite integral of a positive function of one variable represents the area of the region between the graph of the function and the x-axis, the double integral of a positive function of two variables represents the volume of the region between the surface defined by the function (on the three-dimensional Cartesian plane where z = f(x, y)) and the plane which contains its domain. [1]

  7. Newton–Cotes formulas - Wikipedia

    en.wikipedia.org/wiki/Newton–Cotes_formulas

    It is assumed that the value of a function f defined on [,] is known at + equally spaced points: < < <.There are two classes of Newton–Cotes quadrature: they are called "closed" when = and =, i.e. they use the function values at the interval endpoints, and "open" when > and <, i.e. they do not use the function values at the endpoints.

  8. Simpson's rule - Wikipedia

    en.wikipedia.org/wiki/Simpson's_rule

    Integration by Simpson's 1/3 rule can be represented as a weighted average with 2/3 of the value coming from integration by the trapezoidal rule with step h and 1/3 of the value coming from integration by the rectangle rule with step 2h.

  9. Integration by reduction formulae - Wikipedia

    en.wikipedia.org/wiki/Integration_by_reduction...

    To compute the integral, we set n to its value and use the reduction formula to express it in terms of the (n – 1) or (n – 2) integral. The lower index integral can be used to calculate the higher index ones; the process is continued repeatedly until we reach a point where the function to be integrated can be computed, usually when its index is 0 or 1.