enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Jacobi eigenvalue algorithm - Wikipedia

    en.wikipedia.org/wiki/Jacobi_eigenvalue_algorithm

    Since singular values of a real matrix are the square roots of the eigenvalues of the symmetric matrix = it can also be used for the calculation of these values. For this case, the method is modified in such a way that S must not be explicitly calculated which reduces the danger of round-off errors .

  3. Jacobi method - Wikipedia

    en.wikipedia.org/wiki/Jacobi_method

    A sufficient (but not necessary) condition for the method to converge is that the matrix A is strictly or irreducibly diagonally dominant. Strict row diagonal dominance means that for each row, the absolute value of the diagonal term is greater than the sum of absolute values of other terms:

  4. Modified Richardson iteration - Wikipedia

    en.wikipedia.org/wiki/Modified_Richardson_iteration

    Consider minimizing the function () = ‖ ~ ~ ‖.Since this is a convex function, a sufficient condition for optimality is that the gradient is zero (() =) which gives rise to the equation

  5. TI-84 Plus series - Wikipedia

    en.wikipedia.org/wiki/TI-84_Plus_series

    The TI-84 Plus C Silver Edition was released in 2013 as the first Z80-based Texas Instruments graphing calculator with a color screen.It had a 320×240-pixel full-color screen, a modified version of the TI-84 Plus's 2.55MP operating system, a removable 1200 mAh rechargeable lithium-ion battery, and keystroke compatibility with existing math and programming tools. [6]

  6. Jacobi's formula - Wikipedia

    en.wikipedia.org/wiki/Jacobi's_formula

    In matrix calculus, Jacobi's formula expresses the derivative of the determinant of a matrix A in terms of the adjugate of A and the derivative of A. [1]If A is a differentiable map from the real numbers to n × n matrices, then

  7. Jacobian matrix and determinant - Wikipedia

    en.wikipedia.org/wiki/Jacobian_matrix_and...

    [a] This means that the function that maps y to f(x) + J(x) ⋅ (yx) is the best linear approximation of f(y) for all points y close to x. The linear map h → J(x) ⋅ h is known as the derivative or the differential of f at x. When m = n, the Jacobian matrix is square, so its determinant is a well-defined function of x, known as the ...

  8. Matrix calculus - Wikipedia

    en.wikipedia.org/wiki/Matrix_calculus

    In mathematics, matrix calculus is a specialized notation for doing multivariable calculus, especially over spaces of matrices.It collects the various partial derivatives of a single function with respect to many variables, and/or of a multivariate function with respect to a single variable, into vectors and matrices that can be treated as single entities.

  9. Conjugate gradient method - Wikipedia

    en.wikipedia.org/wiki/Conjugate_gradient_method

    The conjugate gradient method can be applied to an arbitrary n-by-m matrix by applying it to normal equations A T A and right-hand side vector A T b, since A T A is a symmetric positive-semidefinite matrix for any A. The result is conjugate gradient on the normal equations (CGN or CGNR). A T Ax = A T b