Search results
Results from the WOW.Com Content Network
The average silhouette of the data is another useful criterion for assessing the natural number of clusters. The silhouette of a data instance is a measure of how closely it is matched to data within its cluster and how loosely it is matched to data of the neighboring cluster, i.e., the cluster whose average distance from the datum is lowest. [8]
Combined Higher Secondary Level Examination (SSC CHSL) is a standardized test conducted by the Staff Selection Commission (SSC) to recruit Lower Divisional Clerk (LDC)/ Junior Secretariat Assistant (JSA) / Postal Assistant and Data Entry Operator(DEO) officers to various posts in ministries, departments and organisations of the Government of India.
The commission is headed by a Chairman [5] and two members after him. Besides, there are one Secretary, one Director, one Deputy Secretary, two Joint Directors, nine Under Secretaries, four Deputy Directors, one Finance & Budget Officer, one Assistant Director (OL), 24 Section Officers and more than 183 supporting officers/staff are at the Headquarters for discharging the duties and ...
Cluster analysis or clustering is the task of grouping a set of objects in such a way that objects in the same group (called a cluster) are more similar (in some specific sense defined by the analyst) to each other than to those in other groups (clusters).
where n i is the number of points in cluster C i, c i is the centroid of C i, and c is the overall centroid of the data. BCSS measures how well the clusters are separated from each other (the higher the better). WCSS (Within-Cluster Sum of Squares) is the sum of squared Euclidean distances between the data points and their respective cluster ...
In computer science, locality-sensitive hashing (LSH) is a fuzzy hashing technique that hashes similar input items into the same "buckets" with high probability. [1] ( The number of buckets is much smaller than the universe of possible input items.) [1] Since similar items end up in the same buckets, this technique can be used for data clustering and nearest neighbor search.
Consensus clustering is a method of aggregating (potentially conflicting) results from multiple clustering algorithms.Also called cluster ensembles [1] or aggregation of clustering (or partitions), it refers to the situation in which a number of different (input) clusterings have been obtained for a particular dataset and it is desired to find a single (consensus) clustering which is a better ...
In graph theory, a clustering coefficient is a measure of the degree to which nodes in a graph tend to cluster together. Evidence suggests that in most real-world networks, and in particular social networks, nodes tend to create tightly knit groups characterised by a relatively high density of ties; this likelihood tends to be greater than the average probability of a tie randomly established ...