Search results
Results from the WOW.Com Content Network
Light whose wavelength is well outside the visible spectrum has a luminous energy of zero, regardless of the amount of radiant energy present. The SI unit of luminous energy is the lumen second, which is unofficially known as the "talbot" in honor of William Henry Fox Talbot. In other systems of units, luminous energy may be expressed in basic ...
Luminous energy: Q v [nb 3] lumen second: lm⋅s T⋅J: The lumen second is sometimes called the talbot. Luminous flux, luminous power Φ v [nb 3] lumen (= candela steradian) lm (= cd⋅sr) J: Luminous energy per unit time Luminous intensity: I v: candela (= lumen per steradian) cd (= lm/sr) J: Luminous flux per unit solid angle: Luminance: L v ...
This word is taken from two Greek words, photos, which means light, and synthesis, which in chemistry means making a substance by combining simpler substances. So, in the presence of light, synthesis of food is called 'photosynthesis'. Noncyclic photophosphorylation through light-dependent reactions of photosynthesis at the thylakoid membrane.
The Indian Buddhists, such as Dignāga in the fifth century and Dharmakirti in the seventh century, developed a type of atomism that is a philosophy about reality being composed of atomic entities that are momentary flashes of light or energy. They viewed light as being an atomic entity equivalent to energy. [34]
Chemical energy is the energy of chemical substances that is released when the substances undergo a chemical reaction and transform into other substances. Some examples of storage media of chemical energy include batteries, [1] food, and gasoline (as well as oxygen gas, which is of high chemical energy due to its relatively weak double bond [2] and indispensable for chemical-energy release in ...
Photoexcitation is the first step in a photochemical process where the reactant is elevated to a state of higher energy, an excited state.The first law of photochemistry, known as the Grotthuss–Draper law (for chemists Theodor Grotthuss and John W. Draper), states that light must be absorbed by a chemical substance in order for a photochemical reaction to take place.
Light usually has multiple frequencies that sum to form the resultant wave. Different frequencies undergo different angles of refraction, a phenomenon known as dispersion. A monochromatic wave (a wave of a single frequency) consists of successive troughs and crests, and the distance between two adjacent crests or troughs is called the ...
By recording the attenuation of light for various wavelengths, an absorption spectrum can be obtained. In physics, absorption of electromagnetic radiation is how matter (typically electrons bound in atoms) takes up a photon's energy—and so transforms electromagnetic energy into internal energy of the absorber (for example, thermal energy). [1]