Search results
Results from the WOW.Com Content Network
The Nyquist plot for () = + + with s = jω.. In control theory and stability theory, the Nyquist stability criterion or Strecker–Nyquist stability criterion, independently discovered by the German electrical engineer Felix Strecker [] at Siemens in 1930 [1] [2] [3] and the Swedish-American electrical engineer Harry Nyquist at Bell Telephone Laboratories in 1932, [4] is a graphical technique ...
Liénard–Chipart criterion; Nyquist stability criterion; Routh–Hurwitz stability criterion; Vakhitov–Kolokolov stability criterion; Barkhausen stability criterion; Stability may also be determined by means of root locus analysis. Although the concept of stability is general, there are several narrower definitions through which it may be ...
The M circle with M = 0.45 is highlighted in red and intercepts the Nyquist plot at frequencies . Hall circles (also known as M-circles and N-circles ) are a graphical tool in control theory used to obtain values of a closed-loop transfer function from the Nyquist plot (or the Nichols plot ) of the associated open-loop transfer function.
Lur'e problem block diagram. An early nonlinear feedback system analysis problem was formulated by A. I. Lur'e.Control systems described by the Lur'e problem have a forward path that is linear and time-invariant, and a feedback path that contains a memory-less, possibly time-varying, static nonlinearity.
The Nyquist stability criterion developed by Harry Nyquist of Bell Laboratories is used to study the stability of feedback amplifiers. Feedback amplifiers share these properties: [3] Pros: Can increase or decrease input impedance (depending on type of feedback). Can increase or decrease output impedance (depending on type of feedback).
Tools include the root locus, the Nyquist stability criterion, the Bode plot, the gain margin and phase margin. More advanced tools include Bode integrals to assess performance limitations and trade-offs, and describing functions to analyze nonlinearities in the frequency domain.
The Nyquist stability criterion can now be found in many textbooks on feedback control theory. His early theoretical work on determining the bandwidth requirements for transmitting information laid the foundations for later advances by Claude Shannon , which led to the development of information theory .
In nonlinear control and stability theory, the circle criterion is a stability criterion for nonlinear time-varying systems. It can be viewed as a generalization of the Nyquist stability criterion for linear time-invariant (LTI) systems .