Search results
Results from the WOW.Com Content Network
In Euclidean plane geometry, a tangent line to a circle is a line that touches the circle at exactly one point, never entering the circle's interior. Tangent lines to circles form the subject of several theorems , and play an important role in many geometrical constructions and proofs .
A tangent, a chord, and a secant to a circle. The intuitive notion that a tangent line "touches" a curve can be made more explicit by considering the sequence of straight lines (secant lines) passing through two points, A and B, those that lie on the function curve. The tangent at A is the limit when point B approximates or tends to A. The ...
In geometry, tangent circles (also known as kissing circles) are circles in a common plane that intersect in a single point. There are two types of tangency : internal and external. Many problems and constructions in geometry are related to tangent circles; such problems often have real-life applications such as trilateration and maximizing the ...
All tangent circles to the given circles can be found by varying line . Positions of the centers Circles tangent to two circles. If is the center and the radius of the circle, that is tangent to the given circles at the points ,, then:
A circle with 1st-order contact (tangent) A circle with 2nd-order contact (osculating) A circle with 3rd-order contact at a vertex of a curve. For each point S(t) on a smooth plane curve S, there is exactly one osculating circle, whose radius is the reciprocal of κ(t), the curvature of S at t.
If two tangent lines can be drawn from a pole to the circle, then its polar passes through both tangent points. If a point lies on the circle, its polar is the tangent through this point. If a point P lies on its own polar line, then P is on the circle. Each line has exactly one pole.
Discover the best free online games at AOL.com - Play board, card, casino, puzzle and many more online games while chatting with others in real-time.
In mathematics, a Ford circle is a circle in the Euclidean plane, in a family of circles that are all tangent to the -axis at rational points. For each rational number p / q {\displaystyle p/q} , expressed in lowest terms, there is a Ford circle whose center is at the point ( p / q , 1 / ( 2 q 2 ) ) {\displaystyle (p/q,1/(2q^{2}))} and whose ...