enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Electromagnetic tensor - Wikipedia

    en.wikipedia.org/wiki/Electromagnetic_tensor

    This gives the fields in a particular reference frame; if the reference frame is changed, the components of the electromagnetic tensor will transform covariantly, and the fields in the new frame will be given by the new components. In contravariant matrix form with metric signature (+,-,-,-),

  3. Einstein field equations - Wikipedia

    en.wikipedia.org/wiki/Einstein_field_equations

    If the energy–momentum tensor T μν is that of an electromagnetic field in free space, i.e. if the electromagnetic stress–energy tensor = (+) is used, then the Einstein field equations are called the Einstein–Maxwell equations (with cosmological constant Λ, taken to be zero in conventional relativity theory): + = (+).

  4. Electromagnetic field - Wikipedia

    en.wikipedia.org/wiki/Electromagnetic_field

    An electromagnetic field (also EM field) is a physical field, mathematical functions of position and time, representing the influences on and due to electric charges. [1] The field at any point in space and time can be regarded as a combination of an electric field and a magnetic field .

  5. Mathematical descriptions of the electromagnetic field

    en.wikipedia.org/wiki/Mathematical_descriptions...

    The most common description of the electromagnetic field uses two three-dimensional vector fields called the electric field and the magnetic field. These vector fields each have a value defined at every point of space and time and are thus often regarded as functions of the space and time coordinates.

  6. Maxwell's equations - Wikipedia

    en.wikipedia.org/wiki/Maxwell's_equations

    Electric field from positive to negative charges. Gauss's law describes the relationship between an electric field and electric charges: an electric field points away from positive charges and towards negative charges, and the net outflow of the electric field through a closed surface is proportional to the enclosed charge, including bound charge due to polarization of material.

  7. Maxwell's equations in curved spacetime - Wikipedia

    en.wikipedia.org/wiki/Maxwell's_equations_in...

    The electromagnetic field is a covariant antisymmetric tensor of degree 2, which can be defined in terms of the electromagnetic potential by =.. To see that this equation is invariant, we transform the coordinates as described in the classical treatment of tensors: ¯ = ¯ ¯ ¯ ¯ = ¯ (¯) ¯ (¯) = ¯ ¯ + ¯ ¯ ¯ ¯ ¯ ¯ = ¯ ¯ ¯ ¯ = ¯ ¯ = ¯ ¯.

  8. Classification of electromagnetic fields - Wikipedia

    en.wikipedia.org/wiki/Classification_of...

    The electromagnetic field at a point p (i.e. an event) of a Lorentzian spacetime is represented by a real bivector F = F ab defined over the tangent space at p. The tangent space at p is isometric as a real inner product space to E 1,3. That is, it has the same notion of vector magnitude and angle as Minkowski spacetime.

  9. Electromagnetic stress–energy tensor - Wikipedia

    en.wikipedia.org/wiki/Electromagnetic_stress...

    The electromagnetic stress–energy tensor in the International System of Quantities (ISQ), which underlies the SI, is [1] = [], where is the electromagnetic tensor and where is the Minkowski metric tensor of metric signature (− + + +) and the Einstein summation convention over repeated indices is used.