Search results
Results from the WOW.Com Content Network
Most experimentally determined values of the thermal contact resistance fall between 0.000005 and 0.0005 m 2 K/W (the corresponding range of thermal contact conductance is 200,000 to 2000 W/m 2 K). To know whether the thermal contact resistance is significant or not, magnitudes of the thermal resistances of the layers are compared with typical ...
The SI unit of absolute thermal resistance is kelvins per watt (K/W) or the equivalent degrees Celsius per watt (°C/W) – the two are the same since the intervals are equal: ΔT = 1 K = 1 °C. The thermal resistance of materials is of great interest to electronic engineers because most electrical components generate heat and need to be cooled.
Contact resistance values are typically small (in the microohm to milliohm range). Contact resistance can cause significant voltage drops and heating in circuits with high current. Because contact resistance adds to the intrinsic resistance of the conductors, it can cause significant measurement errors when exact resistance values are needed.
The relationship between thermal conductivity and conductance is analogous to the relationship between electrical conductivity and electrical conductance. Thermal resistance is the inverse of thermal conductance. [6] It is a convenient measure to use in multicomponent design since thermal resistances are additive when occurring in series. [7]
Perfect thermal isolation is an idealization as real systems are always in thermal contact with their environment to some extent. When two solid bodies are in contact, a resistance to heat transfer exists between the bodies. The study of heat conduction between such bodies is called thermal contact conductance (or thermal contact resistance).
As quoted in an online version of: David R. Lide (ed), CRC Handbook of Chemistry and Physics, 84th Edition.CRC Press. Boca Raton, Florida, 2003; Section 4, Properties of the Elements and Inorganic Compounds; Physical Properties of the Rare Earth Metals
Contact force or pressure increases the size of the a-spot which decreases the constriction resistance and the electrical contact resistance. [11] When the size of contacting asperities becomes larger than the mean free path of electrons, Holm-type contacts become the dominant transport mechanism, resulting in a relatively low contact resistance.
The conductor choice determines its electrical resistance and other physical parameters for dynamic line rating (DLR). Electric current passing through the conductor causes heating according to Joule's first law, resulting in the conductor expanding and the line sagging.