enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Frobenius normal form - Wikipedia

    en.wikipedia.org/wiki/Frobenius_normal_form

    On the other hand, this makes the Frobenius normal form rather different from other normal forms that do depend on factoring the characteristic polynomial, notably the diagonal form (if A is diagonalizable) or more generally the Jordan normal form (if the characteristic polynomial splits into linear factors). For instance, the Frobenius normal ...

  3. Matrix norm - Wikipedia

    en.wikipedia.org/wiki/Matrix_norm

    The Frobenius norm is an extension of the Euclidean norm to and comes from the Frobenius inner product on the space of all matrices. The Frobenius norm is sub-multiplicative and is very useful for numerical linear algebra. The sub-multiplicativity of Frobenius norm can be proved using Cauchy–Schwarz inequality.

  4. Total least squares - Wikipedia

    en.wikipedia.org/wiki/Total_least_squares

    where [] is the augmented matrix with E and F side by side and ‖ ‖ is the Frobenius norm, the square root of the sum of the squares of all entries in a matrix and so equivalently the square root of the sum of squares of the lengths of the rows or columns of the matrix. This can be rewritten as

  5. Matrix regularization - Wikipedia

    en.wikipedia.org/wiki/Matrix_regularization

    One example is the squared Frobenius norm, which can be viewed as an -norm acting either entrywise, or on the singular values of the matrix: = ‖ ‖ = | | = ⁡ =. In the multivariate case the effect of regularizing with the Frobenius norm is the same as the vector case; very complex models will have larger norms, and, thus, will be penalized ...

  6. Schatten norm - Wikipedia

    en.wikipedia.org/wiki/Schatten_norm

    The Schatten 1-norm is the nuclear norm (also known as the trace norm, or the Ky Fan n-norm [1]). The Schatten 2-norm is the Frobenius norm. The Schatten ∞-norm is the spectral norm (also known as the operator norm, or the largest singular value).

  7. Frobenius matrix - Wikipedia

    en.wikipedia.org/wiki/Frobenius_matrix

    A Frobenius matrix is a special kind of square matrix from numerical analysis. A matrix is a Frobenius matrix if it has the following three properties: all entries on the main diagonal are ones; the entries below the main diagonal of at most one column are arbitrary; every other entry is zero; The following matrix is an example.

  8. Higher-order singular value decomposition - Wikipedia

    en.wikipedia.org/wiki/Higher-order_singular...

    ‖ is the Frobenius norm. A simple idea for trying to solve this optimization problem is to truncate the (compact) SVD in step 2 of either the classic or the interlaced computation. A classically truncated HOSVD is obtained by replacing step 2 in the classic computation by

  9. Schur decomposition - Wikipedia

    en.wikipedia.org/wiki/Schur_decomposition

    The nilpotent part N is generally not unique either, but its Frobenius norm is uniquely determined by A (just because the Frobenius norm of A is equal to the Frobenius norm of U = D + N). [6] It is clear that if A is a normal matrix, then U from its Schur decomposition must be a diagonal matrix and the column vectors of Q are the eigenvectors of A.