Search results
Results from the WOW.Com Content Network
Worldwide, the "standard" condition for pressure is variously defined as an absolute pressure of 101,325 pascals (Atmospheric pressure), 1.0 bar (i.e., 100,000 pascals), 14.73 psia, or 14.696 psia and the "standard" temperature is variously defined as 68 °F, 60 °F, 0 °C, 15 °C, 20 °C, or 25 °C. The relative humidity (e.g., 36% or 0%) is ...
For example, if a unit has the symbol "imp gal", and if the link is @[[Gallon]], then if the symbol is linked, it would appear as "imp gal" ("imp" and "gal" link two different articles). The Links section defines exceptions for unit codes with an SI prefix, where the linked article is different from that of the base unit.
At standard mean sea level it specifies a temperature of 15 °C (59 °F), pressure of 101,325 pascals (14.6959 psi) (1 atm), and a density of 1.2250 kilograms per cubic meter (0.07647 lb/cu ft). It also specifies a temperature lapse rate of −6.5 °C (−11.7 °F) per km (approximately −2 °C (−3.6 °F) per 1,000 ft).
The SI unit is cubic metres per second (m 3 /s). Another unit used is standard cubic centimetres per minute (SCCM). In US customary units and imperial units, volumetric flow rate is often expressed as cubic feet per second (ft 3 /s) or gallons per minute (either US or imperial definitions).
The standard unit is the meter cubed per kilogram (m 3 /kg or m 3 ·kg −1). Sometimes specific volume is expressed in terms of the number of cubic centimeters occupied by one gram of a substance. In this case, the unit is the centimeter cubed per gram (cm 3 /g or cm 3 ·g −1). To convert m 3 /kg to cm 3 /g, multiply by 1000; conversely ...
Standard cubic centimeters per minute (SCCM) is a unit used to quantify the flow rate of a fluid. 1 SCCM is identical to 1 cm³ STP /min. Another expression of it would be Nml/min. These standard conditions vary according to different regulatory bodies.
S = Hydraulic slope; h f = head loss in meters (water) over the length of pipe; L = length of pipe in meters; Q = volumetric flow rate, m 3 /s (cubic meters per second) C = pipe roughness coefficient; d = inside pipe diameter, m (meters) Note: pressure drop can be computed from head loss as h f × the unit weight of water (e.g., 9810 N/m 3 at 4 ...
Download as PDF; Printable version; ... C. Actual cubic feet per minute; ... Data-rate units; F. Fixture unit; M. Million standard cubic feet per day; Miner's inch; P.