enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Prediction interval - Wikipedia

    en.wikipedia.org/wiki/Prediction_interval

    The prediction interval is conventionally written as: [, +]. For example, to calculate the 95% prediction interval for a normal distribution with a mean (μ) of 5 and a standard deviation (σ) of 1, then z is approximately 2. Therefore, the lower limit of the prediction interval is approximately 5 ‒ (2⋅1) = 3, and the upper limit is ...

  3. Positive and negative predictive values - Wikipedia

    en.wikipedia.org/wiki/Positive_and_negative...

    The positive predictive value (PPV), or precision, is defined as = + = where a "true positive" is the event that the test makes a positive prediction, and the subject has a positive result under the gold standard, and a "false positive" is the event that the test makes a positive prediction, and the subject has a negative result under the gold standard.

  4. Pythagorean expectation - Wikipedia

    en.wikipedia.org/wiki/Pythagorean_expectation

    Initially the correlation between the formula and actual winning percentage was simply an experimental observation. In 2003, Hein Hundal provided an inexact derivation of the formula and showed that the Pythagorean exponent was approximately 2/(σ √ π) where σ was the standard deviation of runs scored by all teams divided by the average number of runs scored. [8]

  5. Mean absolute percentage error - Wikipedia

    en.wikipedia.org/wiki/Mean_absolute_percentage_error

    However, this effectively simplifies to a much simpler formula: = = | | = | | Confusingly, sometimes when people refer to wMAPE they are talking about a different model in which the numerator and denominator of the wMAPE formula above are weighted again by another set of custom weights w i {\displaystyle w_{i}} .

  6. Expected value - Wikipedia

    en.wikipedia.org/wiki/Expected_value

    According to the summation formula in the case of random variables with countably many outcomes, one has ⁡ [] = = = + + + + = + + + +. It is natural to say that the expected value equals +∞ . There is a rigorous mathematical theory underlying such ideas, which is often taken as part of the definition of the Lebesgue integral. [ 19 ]

  7. Simple linear regression - Wikipedia

    en.wikipedia.org/wiki/Simple_linear_regression

    The formulas given in the previous section allow one to calculate the point estimates of α and β — that is, the coefficients of the regression line for the given set of data. However, those formulas do not tell us how precise the estimates are, i.e., how much the estimators α ^ {\displaystyle {\widehat {\alpha }}} and β ^ {\displaystyle ...

  8. Mean squared prediction error - Wikipedia

    en.wikipedia.org/wiki/Mean_squared_prediction_error

    When the model has been estimated over all available data with none held back, the MSPE of the model over the entire population of mostly unobserved data can be estimated as follows.

  9. Binomial proportion confidence interval - Wikipedia

    en.wikipedia.org/wiki/Binomial_proportion...

    The probability density function (PDF) for the Wilson score interval, plus PDF s at interval bounds. Tail areas are equal. Since the interval is derived by solving from the normal approximation to the binomial, the Wilson score interval ( , + ) has the property of being guaranteed to obtain the same result as the equivalent z-test or chi-squared test.