Search results
Results from the WOW.Com Content Network
Instantaneous phase and frequency are important concepts in signal processing that occur in the context of the representation and analysis of time-varying functions. [1] The instantaneous phase (also known as local phase or simply phase ) of a complex-valued function s ( t ), is the real-valued function:
Neurons firing in synchrony in circadian pacemaker cells. Phase resetting in neurons is a behavior observed in different biological oscillators and plays a role in creating neural synchronization as well as different processes within the body. Phase resetting in neurons is when the dynamical behavior of an oscillation is shifted. This occurs ...
Phase synchronization is the process by which two or more cyclic signals tend to oscillate with a repeating sequence of relative phase angles. Phase synchronisation is usually applied to two waveforms of the same frequency with identical phase angles with each cycle.
The transformation that allows this model to be solved exactly (at least in the N → ∞ limit) is as follows: . Define the "order" parameters r and ψ as = =. Here r represents the phase-coherence of the population of oscillators and ψ indicates the average phase.
Finally, the instantaneous angular chirpyness (symbol γ) is defined to be the second derivative of instantaneous phase or the first derivative of instantaneous angular frequency, = = Angular chirpyness has units of radians per square second (rad/s 2); thus, it is analogous to angular acceleration.
Phase modulation (PM) is a modulation pattern for conditioning communication signals for transmission. It encodes a message signal as variations in the instantaneous phase of a carrier wave. Phase modulation is one of the two principal forms of angle modulation, together with frequency modulation.
In phase modulation, the instantaneous phase deviation () of the carrier is controlled by the modulating waveform, such that the principal frequency remains constant. For angle modulation, the instantaneous frequency of an angle-modulated carrier wave is given by the first derivative with respect to time of the instantaneous phase:
Cell synchronization is a process by which cells in a culture at different stages of the cell cycle are brought to the same phase. Cell synchrony is a vital process in the study of cells progressing through the cell cycle as it allows population-wide data to be collected rather than relying solely on single-cell experiments.