Search results
Results from the WOW.Com Content Network
Instantaneous phase vs time. The function has two true discontinuities of 180° at times 21 and 59, indicative of amplitude zero-crossings. The 360° "discontinuities" at times 19, 37, and 91 are artifacts of phase wrapping. Instantaneous phase of a frequency-modulated waveform: MSK (minimum shift keying).
The red line in the waves give the relative phase shift to the other sine waves, originating from the chirp characteristic. The animation removes the phase shift step by step (like with matched filtering), resulting in a sinc pulse when no relative phase shift is left. A chirp signal shares the same spectral content with an impulse signal.
Alternatively, the phase shift of each symbol sent can be measured with respect to the phase of the previous symbol sent. Because the symbols are encoded in the difference in phase between successive samples, this is called differential phase-shift keying (DPSK). DPSK can be significantly simpler to implement than ordinary PSK, as it is a 'non ...
Phase modulation (PM) is a modulation pattern for conditioning communication signals for transmission. It encodes a message signal as variations in the instantaneous phase of a carrier wave. Phase modulation is one of the two principal forms of angle modulation, together with frequency modulation.
Frequency modulation and phase modulation are the two complementary principal methods of angle modulation; phase modulation is often used as an intermediate step to achieve frequency modulation. These methods contrast with amplitude modulation, in which the amplitude of the carrier wave varies, while the frequency and phase remain constant.
Conversely, a phase reversal or phase inversion implies a 180-degree phase shift. [ 2 ] When the phase difference φ ( t ) {\displaystyle \varphi (t)} is a quarter of turn (a right angle, +90° = π/2 or −90° = 270° = −π/2 = 3π/2 ), sinusoidal signals are sometimes said to be in quadrature , e.g., in-phase and quadrature components of a ...
In effect, the focus is not on the time-domain signal A sin(ωt+θ 0) but rather the argument of the sine function (the phase). Consequently, modeling is often done in the phase domain. The instantaneous frequency of a VCO is often modeled as a linear relationship with its instantaneous control voltage.
In phase modulation, the instantaneous phase deviation () of the carrier is controlled by the modulating waveform, such that the principal frequency remains constant. For angle modulation, the instantaneous frequency of an angle-modulated carrier wave is given by the first derivative with respect to time of the instantaneous phase: