Search results
Results from the WOW.Com Content Network
Picture Name Schläfli symbol Vertex/Face configuration exact dihedral angle (radians) dihedral angle – exact in bold, else approximate (degrees) Platonic solids (regular convex)
This dihedral angle, also called the face angle, is measured as the internal angle with respect to the polyhedron. An angle of 0° means the face normal vectors are antiparallel and the faces overlap each other, which implies that it is part of a degenerate polyhedron. An angle of 180° means the faces are parallel, as in a tiling. An angle ...
In geometry, a Platonic solid is a convex, regular polyhedron in three-dimensional Euclidean space. Being a regular polyhedron means that the faces are congruent (identical in shape and size) regular polygons (all angles congruent and all edges congruent), and the same number of faces meet at each vertex. There are only five such polyhedra:
The property of having a similar arrangement of faces around each vertex can be replaced by any of the following equivalent conditions in the definition: The vertices of a convex regular polyhedron all lie on a sphere. All the dihedral angles of the polyhedron are equal; All the vertex figures of the polyhedron are regular polygons.
In geometry, a polyhedron (pl.: polyhedra or polyhedrons; from Greek πολύ (poly-) 'many' and ἕδρον (-hedron) 'base, seat') is a three-dimensional figure with flat polygonal faces, straight edges and sharp corners or vertices. The term "polyhedron" may refer either to a solid figure or to its boundary surface.
In Jessen's icosahedron, sometimes called Jessen's orthogonal icosahedron, the 12 isosceles faces are arranged differently so that the figure is non-convex and has right dihedral angles. It is scissors congruent to a cube, meaning that it can be sliced into smaller polyhedral pieces that can be rearranged to form a solid cube.
In an ideal polyhedron, all face angles and all solid angles at vertices are zero. However, the dihedral angles on the edges of an ideal polyhedron are nonzero. At each vertex, the supplementary angles of the dihedral angles incident to that vertex sum to exactly 2 π {\displaystyle 2\pi } . [ 2 ]
The supplement of an interior angle is called an exterior angle; that is, an interior angle and an exterior angle form a linear pair of angles. There are two exterior angles at each vertex of the polygon, each determined by extending one of the two sides of the polygon that meet at the vertex; these two angles are vertical and hence are equal.