Search results
Results from the WOW.Com Content Network
Sarcoplasm is the cytoplasm of a muscle cell. It is comparable to the cytoplasm of other cells, but it contains unusually large amounts of glycogen (a polymer of glucose), myoglobin, a red-colored protein necessary for binding oxygen molecules that diffuse into muscle fibers, and mitochondria.
The unusual microscopic anatomy of a muscle cell gave rise to its terminology. The cytoplasm in a muscle cell is termed the sarcoplasm; the smooth endoplasmic reticulum of a muscle cell is termed the sarcoplasmic reticulum; and the cell membrane in a muscle cell is termed the sarcolemma. [9] The sarcolemma receives and conducts stimuli.
A cell type is a classification used to identify cells that share morphological or phenotypical features. [1] A multicellular organism may contain cells of a number of widely differing and specialized cell types, such as muscle cells and skin cells , that differ both in appearance and function yet have identical genomic sequences .
A mitochondrion (pl. mitochondria) is an organelle found in the cells of most eukaryotes, such as animals, plants and fungi.Mitochondria have a double membrane structure and use aerobic respiration to generate adenosine triphosphate (ATP), which is used throughout the cell as a source of chemical energy. [2]
The fibres of striated muscle have a cylindrical shape with blunt ends, whereas those in smooth muscle are spindle-like with tapered ends. Striated muscle tissue has more mitochondria than smooth muscle. Both smooth muscle cells and cardiac muscle cells have a single nucleus, and skeletal muscle cells have many nuclei. [6]
These satellite cells are the main source of most muscle cell formation postnatally, with embryonic myoblasts being responsible for prenatal muscle generation. A single satellite cell can proliferate and become a larger amount of muscle cells. [28] With the understanding that myosatellite cells are the progenitor of most skeletal muscle cells ...
The concentrations of ions such as sodium and potassium in the cytosol are different to those in the extracellular fluid; these differences in ion levels are important in processes such as osmoregulation, cell signaling, and the generation of action potentials in excitable cells such as endocrine, nerve and muscle cells.
Myoglobin is found in Type I muscle, Type II A, and Type II B; although many older texts describe myoglobin as not found in smooth muscle, this has proved erroneous: there is also myoglobin in smooth muscle cells. [14] Myoglobin was the first protein to have its three-dimensional structure revealed by X-ray crystallography. [15]