Search results
Results from the WOW.Com Content Network
In physics and mechanics, torque is the rotational analogue of linear force. [1] It is also referred to as the moment of force (also abbreviated to moment). The symbol for torque is typically , the lowercase Greek letter tau. When being referred to as moment of force, it is commonly denoted by M.
where M k are the components of the applied torques, I k are the principal moments of inertia and ω k are the components of the angular velocity. In the absence of applied torques, one obtains the Euler top. When the torques are due to gravity, there are special cases when the motion of the top is integrable.
The moment of force, or torque, is a first moment: =, or, more generally, .; Similarly, angular momentum is the 1st moment of momentum: =.Momentum itself is not a moment.; The electric dipole moment is also a 1st moment: = for two opposite point charges or () for a distributed charge with charge density ().
Every object perseveres in its state of rest, or of uniform motion in a right line, except insofar as it is compelled to change that state by forces impressed thereon. [note 3] Newton's first law expresses the principle of inertia: the natural behavior of a body is to move in a straight line at constant speed. A body's motion preserves the ...
The moment of inertia plays much the same role in rotational dynamics as mass does in linear dynamics, describing the relationship between angular momentum and angular velocity, torque and angular acceleration, and several other quantities. The symbols I and J are usually used to refer to the moment of inertia or polar moment of inertia.
The moment of inertia depends on how mass is distributed around an axis of rotation, and will vary depending on the chosen axis. For a point-like mass, the moment of inertia about some axis is given by , where is the distance of the point from the axis, and is the mass. For an extended rigid body, the moment of inertia is just the sum of all ...
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
The inertial force must act through the center of mass and the inertial torque can act anywhere. The system can then be analyzed exactly as a static system subjected to this "inertial force and moment" and the external forces. The advantage is that in the equivalent static system one can take moments about any point (not just the center of mass).