Search results
Results from the WOW.Com Content Network
Simplification is the process of replacing a mathematical expression by an equivalent one that is simpler (usually shorter), according to a well-founded ordering. Examples include:
The roots of the quadratic function y = 1 / 2 x 2 − 3x + 5 / 2 are the places where the graph intersects the x-axis, the values x = 1 and x = 5. They can be found via the quadratic formula. In elementary algebra, the quadratic formula is a closed-form expression describing the solutions of a quadratic equation.
According to the Erdős–Szekeres theorem, any sequence of + distinct integers has an increasing or a decreasing subsequence of length + [7] [8] For inputs in which each permutation of the input is equally likely, the expected length of the longest increasing subsequence is approximately . [9] [2]
a 1 = 2, a 2 = 4, a 3 = 8,... The sequence of forward differences is then Δa 0 = a 1 − a 0 = 2 − 1 = 1, Δa 1 = a 2 − a 1 = 4 − 2 = 2, Δa 2 = a 3 − a 2 = 8 − 4 = 4, Δa 3 = a 4 − a 3 = 16 − 8 = 8,... which is just the same sequence. Hence the iterated forward difference sequences all start with Δ n a 0 = 1 for every n. The ...
For instance, to solve the inequality 4x < 2x + 1 ≤ 3x + 2, it is not possible to isolate x in any one part of the inequality through addition or subtraction. Instead, the inequalities must be solved independently, yielding x < 1 / 2 and x ≥ −1 respectively, which can be combined into the final solution −1 ≤ x < 1 / 2 .
Figure 2 is used for the multiples of 2, 4, 6, and 8. These patterns can be used to memorize the multiples of any number from 0 to 10, except 5. As you would start on the number you are multiplying, when you multiply by 0, you stay on 0 (0 is external and so the arrows have no effect on 0, otherwise 0 is used as a link to create a perpetual cycle).
For any integer n, n ≡ 1 (mod 2) if and only if 3n + 1 ≡ 4 (mod 6). Equivalently, n − 1 / 3 ≡ 1 (mod 2) if and only if n ≡ 4 (mod 6). Conjecturally, this inverse relation forms a tree except for the 1–2–4 loop (the inverse of the 4–2–1 loop of the unaltered function f defined in the Statement of the problem section of ...
This series was used as a representation of two of Zeno's paradoxes. [2] For example, in the paradox of Achilles and the Tortoise, the warrior Achilles was to race against a tortoise. The track is 100 meters long. Achilles could run at 10 m/s, while the tortoise only 5. The tortoise, with a 10-meter advantage, Zeno argued, would win.