enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Normal subgroup - Wikipedia

    en.wikipedia.org/wiki/Normal_subgroup

    A normal subgroup of a normal subgroup of a group need not be normal in the group. That is, normality is not a transitive relation. The smallest group exhibiting this phenomenon is the dihedral group of order 8. [15] However, a characteristic subgroup of a normal subgroup is normal. [16] A group in which normality is transitive is called a T ...

  3. Subgroup - Wikipedia

    en.wikipedia.org/wiki/Subgroup

    A proper subgroup of a group G is a subgroup H which is a proper subset of G (that is, H ≠ G). This is often represented notationally by H < G, read as "H is a proper subgroup of G". Some authors also exclude the trivial group from being proper (that is, H ≠ {e} ). [2] [3] If H is a subgroup of G, then G is sometimes called an overgroup of H.

  4. Centralizer and normalizer - Wikipedia

    en.wikipedia.org/wiki/Centralizer_and_normalizer

    If H is a subgroup of G, then the largest subgroup of G in which H is normal is the subgroup N G (H). If S is a subset of G such that all elements of S commute with each other, then the largest subgroup of G whose center contains S is the subgroup C G (S). A subgroup H of a group G is called a self-normalizing subgroup of G if N G (H) = H.

  5. Characteristic subgroup - Wikipedia

    en.wikipedia.org/wiki/Characteristic_subgroup

    A subgroup of H that is invariant under all inner automorphisms is called normal; also, an invariant subgroup. ∀φ ∈ Inn(G): φ(H) ≤ H. Since Inn(G) ⊆ Aut(G) and a characteristic subgroup is invariant under all automorphisms, every characteristic subgroup is normal. However, not every normal subgroup is characteristic.

  6. Index of a subgroup - Wikipedia

    en.wikipedia.org/wiki/Index_of_a_subgroup

    O p (G) is the intersection of all normal subgroups K of G such that G/K is a (possibly non-abelian) p-group (i.e., K is an index normal subgroup): G/O p (G) is the largest p-group (not necessarily abelian) onto which G surjects. O p (G) is also known as the p-residual subgroup.

  7. Core (group theory) - Wikipedia

    en.wikipedia.org/wiki/Core_(group_theory)

    A core-free subgroup is a subgroup whose normal core is the trivial subgroup. Equivalently, it is a subgroup that occurs as the isotropy subgroup of a transitive, faithful group action. The solution for the hidden subgroup problem in the abelian case generalizes to finding the normal core in case of subgroups of arbitrary groups.

  8. Subgroup series - Wikipedia

    en.wikipedia.org/wiki/Subgroup_series

    Subgroup series can simplify the study of a group to the study of simpler subgroups and their relations, and several subgroup series can be invariantly defined and are important invariants of groups. A subgroup series is used in the subgroup method. Subgroup series are a special example of the use of filtrations in abstract algebra.

  9. Normal closure (group theory) - Wikipedia

    en.wikipedia.org/wiki/Normal_closure_(group_theory)

    The normal closure ⁡ is the smallest normal subgroup of containing , [1] in the sense that ⁡ is a subset of every normal subgroup of that contains . The ...