enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Logistic regression - Wikipedia

    en.wikipedia.org/wiki/Logistic_regression

    Logistic regression is a supervised machine learning algorithm widely used for binary classification tasks, such as identifying whether an email is spam or not and diagnosing diseases by assessing the presence or absence of specific conditions based on patient test results. This approach utilizes the logistic (or sigmoid) function to transform ...

  3. Softmax function - Wikipedia

    en.wikipedia.org/wiki/Softmax_function

    Specifically, in multinomial logistic regression and linear discriminant analysis, the input to the function is the result of K distinct linear functions, and the predicted probability for the j th class given a sample vector x and a weighting vector w is:

  4. Multinomial logistic regression - Wikipedia

    en.wikipedia.org/.../Multinomial_logistic_regression

    The formulation of binary logistic regression as a log-linear model can be directly extended to multi-way regression. That is, we model the logarithm of the probability of seeing a given output using the linear predictor as well as an additional normalization factor , the logarithm of the partition function :

  5. Linear regression - Wikipedia

    en.wikipedia.org/wiki/Linear_regression

    Linear regression plays an important role in the subfield of artificial intelligence known as machine learning. The linear regression algorithm is one of the fundamental supervised machine-learning algorithms due to its relative simplicity and well-known properties. [34]

  6. Regression analysis - Wikipedia

    en.wikipedia.org/wiki/Regression_analysis

    In statistical modeling, regression analysis is a set of statistical processes for estimating the relationships between a dependent variable (often called the outcome or response variable, or a label in machine learning parlance) and one or more error-free independent variables (often called regressors, predictors, covariates, explanatory ...

  7. Elastic net regularization - Wikipedia

    en.wikipedia.org/wiki/Elastic_net_regularization

    In statistics and, in particular, in the fitting of linear or logistic regression models, the elastic net is a regularized regression method that linearly combines the L 1 and L 2 penalties of the lasso and ridge methods. Nevertheless, elastic net regularization is typically more accurate than both methods with regard to reconstruction. [1]

  8. Generalized linear model - Wikipedia

    en.wikipedia.org/wiki/Generalized_linear_model

    In statistics, a generalized linear model (GLM) is a flexible generalization of ordinary linear regression.The GLM generalizes linear regression by allowing the linear model to be related to the response variable via a link function and by allowing the magnitude of the variance of each measurement to be a function of its predicted value.

  9. Sigmoid function - Wikipedia

    en.wikipedia.org/wiki/Sigmoid_function

    The logistic function can be calculated efficiently by utilizing type III Unums. [ 8 ] An hierarchy of sigmoid growth models with increasing complexity (number of parameters) was built [ 9 ] with the primary goal to re-analyze kinetic data, the so called N-t curves, from heterogeneous nucleation experiments, [ 10 ] in electrochemistry .