enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Merge sort - Wikipedia

    en.wikipedia.org/wiki/Merge_sort

    In computer science, merge sort (also commonly spelled as mergesort and as merge-sort [2]) is an efficient, general-purpose, and comparison-based sorting algorithm. Most implementations produce a stable sort , which means that the relative order of equal elements is the same in the input and output.

  3. Merge algorithm - Wikipedia

    en.wikipedia.org/wiki/Merge_algorithm

    Repeatedly merge sublists to create a new sorted sublist until the single list contains all elements. The single list is the sorted list. The merge algorithm is used repeatedly in the merge sort algorithm. An example merge sort is given in the illustration. It starts with an unsorted array of 7 integers. The array is divided into 7 partitions ...

  4. Timsort - Wikipedia

    en.wikipedia.org/wiki/Timsort

    Timsort is a hybrid, stable sorting algorithm, derived from merge sort and insertion sort, designed to perform well on many kinds of real-world data. It was implemented by Tim Peters in 2002 for use in the Python programming language. The algorithm finds subsequences of the data that are already ordered (runs) and uses them to sort the ...

  5. Sorting algorithm - Wikipedia

    en.wikipedia.org/wiki/Sorting_algorithm

    Insertion sort is widely used for small data sets, while for large data sets an asymptotically efficient sort is used, primarily heapsort, merge sort, or quicksort. Efficient implementations generally use a hybrid algorithm , combining an asymptotically efficient algorithm for the overall sort with insertion sort for small lists at the bottom ...

  6. Dynamic programming - Wikipedia

    en.wikipedia.org/wiki/Dynamic_programming

    This is why merge sort and quick sort are not classified as dynamic programming problems. Optimal substructure means that the solution to a given optimization problem can be obtained by the combination of optimal solutions to its sub-problems. Such optimal substructures are usually described by means of recursion.

  7. Divide-and-conquer algorithm - Wikipedia

    en.wikipedia.org/wiki/Divide-and-conquer_algorithm

    The divide-and-conquer technique is the basis of efficient algorithms for many problems, such as sorting (e.g., quicksort, merge sort), multiplying large numbers (e.g., the Karatsuba algorithm), finding the closest pair of points, syntactic analysis (e.g., top-down parsers), and computing the discrete Fourier transform . [1]

  8. External sorting - Wikipedia

    en.wikipedia.org/wiki/External_sorting

    External sorting algorithms generally fall into two types, distribution sorting, which resembles quicksort, and external merge sort, which resembles merge sort. External merge sort typically uses a hybrid sort-merge strategy. In the sorting phase, chunks of data small enough to fit in main memory are read, sorted, and written out to a temporary ...

  9. Batcher odd–even mergesort - Wikipedia

    en.wikipedia.org/wiki/Batcher_odd–even_mergesort

    Batcher's odd–even mergesort [1] is a generic construction devised by Ken Batcher for sorting networks of size O(n (log n) 2) and depth O((log n) 2), where n is the number of items to be sorted. Although it is not asymptotically optimal, Knuth concluded in 1998, with respect to the AKS network that "Batcher's method is much better, unless n ...