enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Row and column spaces - Wikipedia

    en.wikipedia.org/wiki/Row_and_column_spaces

    The nullity of a matrix is the dimension of the null space, and is equal to the number of columns in the reduced row echelon form that do not have pivots. [7] The rank and nullity of a matrix A with n columns are related by the equation:

  3. Nullity (graph theory) - Wikipedia

    en.wikipedia.org/wiki/Nullity_(graph_theory)

    The nullity of a graph in the mathematical subject of graph theory can mean either of two unrelated numbers. If the graph has n vertices and m edges, then: In the matrix theory of graphs, the nullity of the graph is the nullity of the adjacency matrix A of the graph. The nullity of A is given by n − r where r is the rank of the adjacency

  4. Rank–nullity theorem - Wikipedia

    en.wikipedia.org/wiki/Rank–nullity_theorem

    Rank–nullity theorem. The rank–nullity theorem is a theorem in linear algebra, which asserts: the number of columns of a matrix M is the sum of the rank of M and the nullity of M; and; the dimension of the domain of a linear transformation f is the sum of the rank of f (the dimension of the image of f) and the nullity of f (the dimension of ...

  5. Null (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Null_(mathematics)

    A null space of a mapping is the part of the domain that is mapped into the null element of the image (the inverse image of the null element). For example, in linear algebra, the null space of a linear mapping, also known as kernel, is the set of vectors which map to the null vector under that mapping.

  6. Rank (linear algebra) - Wikipedia

    en.wikipedia.org/wiki/Rank_(linear_algebra)

    Once in row echelon form, the rank is clearly the same for both row rank and column rank, and equals the number of pivots (or basic columns) and also the number of non-zero rows. For example, the matrix A given by = [] can be put in reduced row-echelon form by using the following elementary row operations: [] + [] + [] + [] + [] . The final ...

  7. Kernel (linear algebra) - Wikipedia

    en.wikipedia.org/wiki/Kernel_(linear_algebra)

    The left null space of A is the same as the kernel of A T. The left null space of A is the orthogonal complement to the column space of A, and is dual to the cokernel of the associated linear transformation. The kernel, the row space, the column space, and the left null space of A are the four fundamental subspaces associated with the matrix A.

  8. Moore–Penrose inverse - Wikipedia

    en.wikipedia.org/wiki/Moore–Penrose_inverse

    For the cases where ⁠ ⁠ has full row or column rank, and the inverse of the correlation matrix (⁠ ⁠ for ⁠ ⁠ with full row rank or ⁠ ⁠ for full column rank) is already known, the pseudoinverse for matrices related to ⁠ ⁠ can be computed by applying the Sherman–Morrison–Woodbury formula to update the inverse of the ...

  9. Nullity theorem - Wikipedia

    en.wikipedia.org/wiki/Nullity_theorem

    The nullity theorem is a mathematical theorem about the inverse of a partitioned matrix, which states that the nullity of a block in a matrix equals the nullity of the complementary block in its inverse matrix. Here, the nullity is the dimension of the kernel.