Search results
Results from the WOW.Com Content Network
The definition of matrix multiplication is that if C = AB for an n × m matrix A and an m × p matrix B, then C is an n × p matrix with entries = =. From this, a simple algorithm can be constructed which loops over the indices i from 1 through n and j from 1 through p, computing the above using a nested loop:
In theoretical computer science, the computational complexity of matrix multiplication dictates how quickly the operation of matrix multiplication can be performed. Matrix multiplication algorithms are a central subroutine in theoretical and numerical algorithms for numerical linear algebra and optimization, so finding the fastest algorithm for matrix multiplication is of major practical ...
The latter point is easy to understand when considering again the scalar equivalent a * x = b, for which the solution x = a^-1 * b would require two operations instead of the more efficient x = b / a. The problem is that generally matrix multiplications are not commutative as the extension of the scalar solution to the matrix case would require:
In mathematics, a collocation method is a method for the numerical solution of ordinary differential equations, partial differential equations and integral equations.The idea is to choose a finite-dimensional space of candidate solutions (usually polynomials up to a certain degree) and a number of points in the domain (called collocation points), and to select that solution which satisfies the ...
Since matrix multiplication forms the basis for many algorithms, and many operations on matrices even have the same complexity as matrix multiplication (up to a multiplicative constant), the computational complexity of matrix multiplication appears throughout numerical linear algebra and theoretical computer science.
The standard convergence condition (for any iterative method) is when the spectral radius of the iteration matrix is less than 1: ρ ( D − 1 ( L + U ) ) < 1. {\displaystyle \rho (D^{-1}(L+U))<1.} A sufficient (but not necessary) condition for the method to converge is that the matrix A is strictly or irreducibly diagonally dominant .
The iterative proportional fitting procedure (IPF or IPFP, also known as biproportional fitting or biproportion in statistics or economics (input-output analysis, etc.), RAS algorithm [1] in economics, raking in survey statistics, and matrix scaling in computer science) is the operation of finding the fitted matrix which is the closest to an initial matrix but with the row and column totals of ...
In other words, the matrix of the combined transformation A followed by B is simply the product of the individual matrices. When A is an invertible matrix there is a matrix A −1 that represents a transformation that "undoes" A since its composition with A is the identity matrix. In some practical applications, inversion can be computed using ...