Search results
Results from the WOW.Com Content Network
In mathematics, the harmonic mean is a kind of average, one of the Pythagorean means. It is the most appropriate average for ratios and rates such as speeds, [1] [2] ...
The weighted harmonic mean of p-values , …, is defined as = = = /, where , …, are weights that must sum to one, i.e. = =.Equal weights may be chosen, in which case = /.. In general, interpreting the HMP directly as a p-value is anti-conservative, meaning that the false positive rate is higher than expected.
Subcontrary, which we call harmonic, is the mean when they are such that, by whatever part of itself the first term exceeds the second, by that part of the third the middle term exceeds the third. It turns out that in this proportion the interval between the greater terms is greater and that between the lesser terms is less.
The harmonic mean is an average which is useful for sets of numbers which are defined in relation to some unit, as in the case of speed (i.e., distance per unit of time): ¯ = (=) For example, the harmonic mean of the five values: 4, 36, 45, 50, 75 is
In mathematics, the QM-AM-GM-HM inequalities, also known as the mean inequality chain, state the relationship between the harmonic mean, geometric mean, arithmetic mean, and quadratic mean (also known as root mean square). Suppose that ,, …, are positive real numbers. Then
Harmonic numbers are related to the harmonic mean in that the n-th harmonic number is also n times the reciprocal of the harmonic mean of the first n positive integers. Harmonic numbers have been studied since antiquity and are important in various branches of number theory.
In mathematics, the geometric–harmonic mean M(x, y) of two positive real numbers x and y is defined as follows: we form the geometric mean of g 0 = x and h 0 = y and call it g 1, i.e. g 1 is the square root of xy. We also form the harmonic mean of x and y and call it h 1, i.e. h 1 is the reciprocal of the arithmetic mean of the reciprocals of ...
In physics, acoustics, and telecommunications, a harmonic is a sinusoidal wave with a frequency that is a positive integer multiple of the fundamental frequency of a periodic signal. The fundamental frequency is also called the 1st harmonic ; the other harmonics are known as higher harmonics .