Search results
Results from the WOW.Com Content Network
In molecular biology, a guanine tetrad (also known as a G-tetrad or G-quartet) is a structure composed of four guanine bases in a square planar array. [1] [2] They most prominently contribute to the structure of G-quadruplexes, where their hydrogen bonding stabilizes the structure.
(The tertiary structure of a protein consists of the way a polypeptide is formed of a complex molecular shape. This is caused by R-group interactions such as ionic and hydrogen bonds, disulphide bridges, and hydrophobic & hydrophilic interactions. Protein tertiary structure is the three-dimensional shape of a protein.
Proteins are often synthesized in an inactive precursor form; typically, an N-terminal or C-terminal segment blocks the active site of the protein, inhibiting its function. The protein is activated by cleaving off the inhibitory peptide. Some proteins even have the power to cleave themselves.
For example, the "unfolded" bacteriorhodopsin in SDS micelles has four transmembrane α-helices folded, while the rest of the protein is situated at the micelle-water interface and can adopt different types of non-native amphiphilic structures. Free energy differences between such detergent-denatured and native states are similar to stabilities ...
Hydrogen bonding networks between subunits has been shown to be important for the stability of the tetrameric quaternary protein structure.For example, a study of SDH which used diverse methods such as protein sequence alignments, structural comparisons, energy calculations, gel filtration experiments and enzyme kinetics experiments, could reveal an important hydrogen bonding network which ...
Thus each half of the protein forms 3.5 TMSs surrounding the channel. The structure explains why GlpF is selectively permeable to straight chain carbohydrates, and why water and ions are largely excluded. Aquaporin-1 (AQP1) and the bacterial glycerol facilitator, GlpF can transport O 2, CO 2, NH 3, glycerol, urea, and water to varying degrees.
Different proteins are degraded at different rates. Abnormal proteins are quickly degraded, whereas the rate of degradation of normal proteins may vary widely depending on their functions. Enzymes at important metabolic control points may be degraded much faster than those enzymes whose activity is largely constant under all physiological ...
Protein before and after folding Results of protein folding. Protein folding is the physical process by which a protein, after synthesis by a ribosome as a linear chain of amino acids, changes from an unstable random coil into a more ordered three-dimensional structure. This structure permits the protein to become biologically functional. [1]