Search results
Results from the WOW.Com Content Network
For a more detailed timeline of aether theories – e.g. their emergence with the wave theory of light – see a separate article. Also, not all experiments are listed here – repetitions, even with much higher precision than the original, are mentioned only if they influence or challenge the opinions at their time. It was the case with:
In part correct, [2] being able to successfully explain refraction, reflection, rectilinear propagation and to a lesser extent diffraction, the theory would fall out of favor in the early nineteenth century, as the wave theory of light amassed new experimental evidence. [3] The modern understanding of light is the concept of wave-particle duality.
This timeline lists significant discoveries in physics and the laws of nature, including experimental discoveries, theoretical proposals that were confirmed experimentally, and theories that have significantly influenced current thinking in modern physics. Such discoveries are often a multi-step, multi-person process.
In the late 17th century, Sir Isaac Newton had advocated that light was corpuscular (particulate), but Christiaan Huygens took an opposing wave description. While Newton had favored a particle approach, he was the first to attempt to reconcile both wave and particle theories of light, and the only one in his time to consider both, thereby anticipating modern wave-particle duality.
1673 – Ignace Pardies provides a wave explanation for refraction of light; 1675 – Robert Boyle discovers that electric attraction and repulsion can act across a vacuum and do not depend upon the air as a medium. Adds resin to the known list of "electrics". 1675 – Isaac Newton delivers his theory of light
The weakness of the wave theory was that light waves, like sound waves, would need a medium for transmission. The existence of the hypothetical substance luminiferous aether proposed by Huygens in 1678 was cast into strong doubt in the late nineteenth century by the Michelson–Morley experiment.
In the late 1660s and early 1670s, Isaac Newton expanded Descartes's ideas into a corpuscle theory of light, famously determining that white light was a mix of colours that can be separated into its component parts with a prism. In 1690, Christiaan Huygens proposed a wave theory for light based on suggestions that had been made by Robert Hooke ...
The theory of special relativity plays an important role in the modern theory of classical electromagnetism. It gives formulas for how electromagnetic objects, in particular the electric and magnetic fields, are altered under a Lorentz transformation from one inertial frame of reference to another. It sheds light on the relationship between ...