Search results
Results from the WOW.Com Content Network
Arc length – Distance along a curve; Area#Area formulas – Size of a two-dimensional surface; Perimeter#Formulas – Path that surrounds an area; List of second moments of area; List of surface-area-to-volume ratios – Surface area per unit volume; List of surface area formulas – Measure of a two-dimensional surface; List of trigonometric ...
3D model of a (uniform) heptagonal prism. In geometry , the heptagonal prism is a prism with heptagonal base. This polyhedron has 9 faces (2 bases and 7 sides), 21 edges, and 14 vertices.
A star prism is a nonconvex polyhedron constructed by two identical star polygon faces on the top and bottom, being parallel and offset by a distance and connected by rectangular faces. A uniform star prism will have Schläfli symbol {p/q} × { }, with p rectangles and 2 {p/q} faces. It is topologically identical to a p-gonal prism.
The surface-area-to-volume ratio has physical dimension inverse length (L −1) and is therefore expressed in units of inverse metre (m −1) or its prefixed unit multiples and submultiples. As an example, a cube with sides of length 1 cm will have a surface area of 6 cm 2 and a volume of 1 cm 3. The surface to volume ratio for this cube is thus
In geometry, a frustum (Latin for 'morsel'); [a] (pl.: frusta or frustums) is the portion of a solid (normally a pyramid or a cone) that lies between two parallel planes cutting the solid. In the case of a pyramid, the base faces are polygonal and the side faces are trapezoidal .
The following is a list of centroids of various two-dimensional and three-dimensional objects. The centroid of an object in -dimensional space is the intersection of all hyperplanes that divide into two parts of equal moment about the hyperplane.
In the case of a triangular prism, its base is a triangle, so its volume can be calculated by multiplying the area of a triangle and the length of the prism: , where b is the length of one side of the triangle, h is the length of an altitude drawn to that side, and l is the distance between the triangular faces. [9]
In physics, a characteristic length is an important dimension that defines the scale of a physical system. Often, such a length is used as an input to a formula in order to predict some characteristics of the system, and it is usually required by the construction of a dimensionless quantity, in the general framework of dimensional analysis and in particular applications such as fluid mechanics.