Search results
Results from the WOW.Com Content Network
A quantity undergoing exponential decay. Larger decay constants make the quantity vanish much more rapidly. This plot shows decay for decay constant (λ) of 25, 5, 1, 1/5, and 1/25 for x from 0 to 5. A quantity is subject to exponential decay if it decreases at a rate proportional to its current value.
In probability theory and statistics, the exponential distribution or negative exponential distribution is the probability distribution of the distance between events in a Poisson point process, i.e., a process in which events occur continuously and independently at a constant average rate; the distance parameter could be any meaningful mono-dimensional measure of the process, such as time ...
There is a half-life describing any exponential-decay process. For example: As noted above, in radioactive decay the half-life is the length of time after which there is a 50% chance that an atom will have undergone nuclear decay. It varies depending on the atom type and isotope, and is usually determined experimentally. See List of nuclides.
Exponential growth or exponential decay—where the varaible change is proportional to the variable value—are thus modeled with exponential functions. Examples are unlimited population growth leading to Malthusian catastrophe , continuously compounded interest , and radioactive decay .
Solving this equation for V yields the formula for exponential decay: =, where V 0 is the capacitor voltage at time t = 0. The time required for the voltage to fall to V 0 / e is called the RC time constant and is given by, [1] =.
The most common form of damping, which is usually assumed, is the form found in linear systems. This form is exponential damping, in which the outer envelope of the successive peaks is an exponential decay curve. That is, when you connect the maximum point of each successive curve, the result resembles an exponential decay function.
Exponential diophantine equation; Exponential dispersion model; Exponential distribution; Exponential error; Exponential factorial; Exponential family; Exponential field; Exponential formula; Exponential function; Exponential generating function; Exponential-Golomb coding; Exponential growth; Exponential hierarchy; Exponential integral ...
Typically, this type of analysis leads to simple exponential heating or cooling behavior ("Newtonian" cooling or heating) since the internal energy of the body is directly proportional to its temperature, which in turn determines the rate of heat transfer into or out of it.