Search results
Results from the WOW.Com Content Network
The mechanism of electrophilic fluorination remains controversial. At issue is whether the reaction proceeds via an S N 2 or single-electron transfer (SET) process. In support of the S N 2 mechanism, aryl Grignard reagents and aryllithiums give similar yields of fluorobenzene in combination with N-fluoro-o-benzenedisulfonimide (NFOBS), even though the tendencies of these reagents to ...
Electrophilic fluorinating reagents could in principle operate by electron transfer pathways or an S N 2 attack at fluorine. This distinction has not been decided. [2] By using a charge-spin separated probe, [3] it was possible to show that the electrophilic fluorination of stilbenes with Selectfluor proceeds through an SET/fluorine atom transfer mechanism.
Electrochemical fluorination (ECF), or electrofluorination, is a foundational organofluorine chemistry method for the preparation of fluorocarbon-based organofluorine compounds. [1] The general approach represents an application of electrosynthesis .
Starting in the late 1940s, a series of electrophilic fluorinating methodologies were introduced, beginning with CoF 3. Electrochemical fluorination ("electrofluorination") was announced, which Joseph H. Simons had developed in the 1930s to generate highly stable perfluorinated materials compatible with uranium hexafluoride. [15]
As mentioned above, aryl and alkenyl nonaflates are useful as electrophiles in palladium catalyzed cross coupling reactions. Their reactivity generally mirrors that of the more commonly encountered triflate electrophiles, but nonaflates tend to be less prone to hydrolysis to ketones (in the case of alkenyl sulfonates) and phenols (in the case of aryl sulfonates).
Joseph H. Simons (10 May 1897 – 30 December 1983) was a U.S. chemist who became famous for discovering one of the first practical ways to mass-produce fluorocarbons in the 1930s while a professor of chemical engineering at Pennsylvania State University.
StubHub's top in-demand 2025 MLS teams. 1. Columbus Crew. 2. Inter Miami CF. 3. San Jose Earthquakes. 4. New England Revolution
The electrophilic Br-Br molecule interacts with electron-rich alkene molecule to form a π-complex 1. Forming of a three-membered bromonium ion The alkene is working as an electron donor and bromine as an electrophile. The three-membered bromonium ion 2 consisted of two carbon atoms and a bromine atom forms with a release of Br −.