Search results
Results from the WOW.Com Content Network
Wikipedia-based Image Text Dataset 37.5 million image-text examples with 11.5 million unique images across 108 Wikipedia languages. 11,500,000 image, caption Pretraining, image captioning 2021 [11] Srinivasan e al, Google Research Visual Genome Images and their description 108,000 images, text Image captioning 2016 [12] R. Krishna et al.
OpenML: [494] Web platform with Python, R, Java, and other APIs for downloading hundreds of machine learning datasets, evaluating algorithms on datasets, and benchmarking algorithm performance against dozens of other algorithms. PMLB: [495] A large, curated repository of benchmark datasets for evaluating supervised machine learning algorithms ...
Extended MNIST (EMNIST) is a newer dataset developed and released by NIST to be the (final) successor to MNIST. [15] [16] MNIST included images only of handwritten digits. EMNIST includes all the images from NIST Special Database 19 (SD 19), which is a large database of 814,255 handwritten uppercase and lower case letters and digits.
CIFAR-10 is a labeled subset of the 80 Million Tiny Images dataset from 2008, published in 2009. When the dataset was created, students were paid to label all of the images. [5] Various kinds of convolutional neural networks tend to be the best at recognizing the images in CIFAR-10.
scikit-learn (formerly scikits.learn and also known as sklearn) is a free and open-source machine learning library for the Python programming language. [3] It features various classification, regression and clustering algorithms including support-vector machines, random forests, gradient boosting, k-means and DBSCAN, and is designed to interoperate with the Python numerical and scientific ...
A training data set is a data set of examples used during the learning process and is used to fit the parameters (e.g., weights) of, for example, a classifier. [9] [10]For classification tasks, a supervised learning algorithm looks at the training data set to determine, or learn, the optimal combinations of variables that will generate a good predictive model. [11]
The ImageNet project is a large visual database designed for use in visual object recognition software research. More than 14 million [1] [2] images have been hand-annotated by the project to indicate what objects are pictured and in at least one million of the images, bounding boxes are also provided. [3]
The 80 Million Tiny Images dataset was retired from use by its creators in 2020, [5] after a paper by researchers Abeba Birhane and Vinay Prabhu found that some of the labeling of several publicly available image datasets, including 80 Million Tiny Images, contained racist and misogynistic slurs which were causing models trained on them to exhibit racial and sexual bias.