Search results
Results from the WOW.Com Content Network
There exist fixed-parameter tractable algorithms to solve the metric dimension problem for the parameters "vertex cover", [13] "max leaf number", [14] and "modular width". [9] Graphs with bounded cyclomatic number, vertex cover number or max leaf number all have bounded treewidth, however it is an open problem to determine the complexity of the ...
In mathematics and computer science, graph theory is the study of graphs, which are mathematical structures used to model pairwise relations between objects. A graph in this context is made up of vertices (also called nodes or points ) which are connected by edges (also called arcs , links or lines ).
Shortest path (A, C, E, D, F), blue, between vertices A and F in the weighted directed graph. In graph theory, the shortest path problem is the problem of finding a path between two vertices (or nodes) in a graph such that the sum of the weights of its constituent edges is minimized.
Pages in category "Unsolved problems in graph theory" The following 32 pages are in this category, out of 32 total. This list may not reflect recent changes. A.
The problems of finding a Hamiltonian path and a Hamiltonian cycle can be related as follows: In one direction, the Hamiltonian path problem for graph G can be related to the Hamiltonian cycle problem in a graph H obtained from G by adding a new universal vertex x, connecting x to all vertices of G. Thus, finding a Hamiltonian path cannot be ...
The assignment problem is a fundamental combinatorial optimization problem. In its most general form, the problem is as follows: The problem instance has a number of agents and a number of tasks. Any agent can be assigned to perform any task, incurring some cost that may vary depending on the agent-task assignment.
In graph theory and theoretical computer science, the longest path problem is the problem of finding a simple path of maximum length in a given graph.A path is called simple if it does not have any repeated vertices; the length of a path may either be measured by its number of edges, or (in weighted graphs) by the sum of the weights of its edges.
Snark (graph theory) Sparse graph. Sparse graph code; Split graph; String graph; Strongly regular graph; Threshold graph; Total graph; Tree (graph theory). Trellis (graph) Turán graph; Ultrahomogeneous graph; Vertex-transitive graph; Visibility graph. Museum guard problem; Wheel graph