enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Logistic regression - Wikipedia

    en.wikipedia.org/wiki/Logistic_regression

    In statistics, the logistic model (or logit model) is a statistical model that models the log-odds of an event as a linear combination of one or more independent variables. In regression analysis , logistic regression [ 1 ] (or logit regression ) estimates the parameters of a logistic model (the coefficients in the linear or non linear ...

  3. Logistic function - Wikipedia

    en.wikipedia.org/wiki/Logistic_function

    The standard logistic function is the logistic function with parameters =, =, =, which yields = + = + = / / + /.In practice, due to the nature of the exponential function, it is often sufficient to compute the standard logistic function for over a small range of real numbers, such as a range contained in [−6, +6], as it quickly converges very close to its saturation values of 0 and 1.

  4. Multilevel modeling for repeated measures - Wikipedia

    en.wikipedia.org/wiki/Multilevel_Modeling_for...

    An alternative method of growth curve analysis is latent growth curve modeling using structural equation modeling (SEM). This approach will provide the same estimates as the multilevel modeling approach, provided that the model is specified identically in SEM. However, there are circumstances in which either MLM or SEM are preferable: [4] [6]

  5. Population model - Wikipedia

    en.wikipedia.org/wiki/Population_model

    One of the most basic and milestone models of population growth was the logistic model of population growth formulated by Pierre François Verhulst in 1838. The logistic model takes the shape of a sigmoid curve and describes the growth of a population as exponential, followed by a decrease in growth, and bound by a carrying capacity due to ...

  6. Logistic distribution - Wikipedia

    en.wikipedia.org/wiki/Logistic_distribution

    As the logistic distribution, which can be solved analytically, is similar to the normal distribution, it can be used instead. The blue picture illustrates an example of fitting the logistic distribution to ranked October rainfalls—that are almost normally distributed—and it shows the 90% confidence belt based on the binomial distribution.

  7. Gompertz function - Wikipedia

    en.wikipedia.org/wiki/Gompertz_function

    The theoretical study by Fornalski et al. [17] showed the biophysical basis of the Gompertz curve for cancer growth except very early phase where parabolic function is more appropriate. They found also that the Gompertz curve describes the most typical case among the broad family of the cancer dynamics’ functions.

  8. Hubbert linearization - Wikipedia

    en.wikipedia.org/wiki/Hubbert_linearization

    The Hubbert curve [2] is the first derivative of a logistic function, which has been used for modeling the depletion of crude oil in particular, the depletion of finite mineral resources in general [3] and also population growth patterns. [4] Example of a Hubbert Linearization on the US Lower-48 crude oil production.

  9. Conditional logistic regression - Wikipedia

    en.wikipedia.org/wiki/Conditional_logistic...

    Logistic regression as described above works satisfactorily when the number of strata is small relative to the amount of data. If we hold the number of strata fixed and increase the amount of data, estimates of the model parameters ( α i {\displaystyle \alpha _{i}} for each stratum and the vector β {\displaystyle {\boldsymbol {\beta ...