enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Drag equation - Wikipedia

    en.wikipedia.org/wiki/Drag_equation

    drag force F d. Using the algorithm of the Buckingham π theorem, these five variables can be reduced to two dimensionless groups: drag coefficient c d and; Reynolds number Re. That this is so becomes apparent when the drag force F d is expressed as part of a function of the other variables in the problem:

  3. Drag coefficient - Wikipedia

    en.wikipedia.org/wiki/Drag_coefficient

    Drag coefficients in fluids with Reynolds number approximately 10 4 [1] [2] Shapes are depicted with the same projected frontal area. In fluid dynamics, the drag coefficient (commonly denoted as: , or ) is a dimensionless quantity that is used to quantify the drag or resistance of an object in a fluid environment, such as air or water.

  4. Drag (physics) - Wikipedia

    en.wikipedia.org/wiki/Drag_(physics)

    In aerodynamics, aerodynamic drag, also known as air resistance, is the fluid drag force that acts on any moving solid body in the direction of the air's freestream flow. [ 22 ] From the body's perspective (near-field approach), the drag results from forces due to pressure distributions over the body surface, symbolized D p r {\displaystyle D ...

  5. Equations for a falling body - Wikipedia

    en.wikipedia.org/wiki/Equations_for_a_falling_body

    The equations ignore air resistance, which has a dramatic effect on objects falling an appreciable distance in air, causing them to quickly approach a terminal velocity. The effect of air resistance varies enormously depending on the size and geometry of the falling object—for example, the equations are hopelessly wrong for a feather, which ...

  6. Automobile drag coefficient - Wikipedia

    en.wikipedia.org/wiki/Automobile_drag_coefficient

    Drag is a force that acts parallel to and in the same direction as the airflow. The drag coefficient of an automobile measures the way the automobile passes through the surrounding air. When automobile companies design a new vehicle they take into consideration the automobile drag coefficient in addition to the other performance characteristics ...

  7. Terminal velocity - Wikipedia

    en.wikipedia.org/wiki/Terminal_velocity

    The downward force of gravity (F g) equals the restraining force of drag (F d) plus the buoyancy. The net force on the object is zero, and the result is that the velocity of the object remains constant. Terminal velocity is the maximum speed attainable by an object as it falls through a fluid (air is the most common example).

  8. Ballistic coefficient - Wikipedia

    en.wikipedia.org/wiki/Ballistic_coefficient

    Using his ballistic tables along with Bashforth's tables from the 1870 report, Mayevski created an analytical math formula that calculated the air resistances of a projectile in terms of log A and the value n. Although Mayevski's math used a differing approach than Bashforth, the resulting calculation of air resistance was the same.

  9. Stokes' law - Wikipedia

    en.wikipedia.org/wiki/Stokes'_law

    Creeping flow past a falling sphere in a fluid (e.g., a droplet of fog falling through the air): streamlines, drag force F d and force by gravity F g. At terminal (or settling) velocity, the excess force F e due to the difference between the weight and buoyancy of the sphere (both caused by gravity [7]) is given by: