Search results
Results from the WOW.Com Content Network
In addition, we suppose that the measurements X 1, X 2, X 3 are modeled as normal distribution N(μ,2). Then, T should follow N(μ,2/) and the parameter μ represents the true speed of passing vehicle. In this experiment, the null hypothesis H 0 and the alternative hypothesis H 1 should be H 0: μ=120 against H 1: μ>120.
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Pages for logged out editors learn more
A simple example of this concept involves the observation that Pearson's chi-squared test is an approximate test. Suppose Pearson's chi-squared test is used to ascertain whether a six-sided die is "fair", indicating that it renders each of the six possible outcomes equally often.
For a Type I error, it is shown as α (alpha) and is known as the size of the test and is 1 minus the specificity of the test. This quantity is sometimes referred to as the confidence of the test, or the level of significance (LOS) of the test. For a Type II error, it is shown as β (beta) and is 1 minus the power or 1 minus the sensitivity of ...
If the p-value is small enough (usually p < 0.05 by convention), then the null hypothesis is rejected, and we conclude that the observed data does not follow the multinomial distribution. A simple example is testing the hypothesis that an ordinary six-sided die is "fair" (i. e., all six outcomes are equally likely to occur).
Naaman [3] proposed an adaption of the significance level to the sample size in order to control false positives: α n, such that α n = n − r with r > 1/2. At least in the numerical example, taking r = 1/2 , results in a significance level of 0.00318, so the frequentist would not reject the null hypothesis, which is in agreement with the ...
An example of Neyman–Pearson hypothesis testing (or null hypothesis statistical significance testing) can be made by a change to the radioactive suitcase example. If the "suitcase" is actually a shielded container for the transportation of radioactive material, then a test might be used to select among three hypotheses: no radioactive source ...
The following table defines the possible outcomes when testing multiple null hypotheses. Suppose we have a number m of null hypotheses, denoted by: H 1, H 2, ..., H m. Using a statistical test, we reject the null hypothesis if the test is declared significant. We do not reject the null hypothesis if the test is non-significant.