enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Shear stress - Wikipedia

    en.wikipedia.org/wiki/Shear_stress

    The formula to calculate average shear stress τ or force per unit area is: [1] =, where F is the force applied and A is the cross-sectional area.. The area involved corresponds to the material face parallel to the applied force vector, i.e., with surface normal vector perpendicular to the force.

  3. Simple shear - Wikipedia

    en.wikipedia.org/wiki/Simple_shear

    This deformation is differentiated from a pure shear by virtue of the presence of a rigid rotation of the material. [2] [3] When rubber deforms under simple shear, its stress-strain behavior is approximately linear. [4] A rod under torsion is a practical example for a body under simple shear. [5]

  4. Shearing (physics) - Wikipedia

    en.wikipedia.org/wiki/Shearing_(physics)

    The rectangularly-framed section has deformed into a parallelogram (shear strain), but the triangular roof trusses have resisted the shear stress and remain undeformed. In continuum mechanics, shearing refers to the occurrence of a shear strain, which is a deformation of a material substance in which parallel internal surfaces slide past one another.

  5. Strain (mechanics) - Wikipedia

    en.wikipedia.org/wiki/Strain_(mechanics)

    Strain tensor is symmetric and has three linear strain and three shear strain (Cartesian) components." [6] ISO 80000-4 further defines linear strain as the "quotient of change in length of an object and its length" and shear strain as the "quotient of parallel displacement of two surfaces of a layer and the thickness of the layer". [6]

  6. Non-Newtonian fluid - Wikipedia

    en.wikipedia.org/wiki/Non-Newtonian_fluid

    Fluids that have a linear shear stress/shear strain relationship but require a finite yield stress before they begin to flow (the plot of shear stress against shear strain does not pass through the origin) are called Bingham plastics. Several examples are clay suspensions, drilling mud, toothpaste, mayonnaise, chocolate, and mustard.

  7. Pure shear - Wikipedia

    en.wikipedia.org/wiki/Pure_shear

    In mechanics and geology, pure shear is a three-dimensional homogeneous flattening of a body. [1] It is an example of irrotational strain in which body is elongated in one direction while being shortened perpendicularly .

  8. Shear thinning - Wikipedia

    en.wikipedia.org/wiki/Shear_thinning

    In rheology, shear thinning is the non-Newtonian behavior of fluids whose viscosity decreases under shear strain. It is sometimes considered synonymous for pseudo- plastic behaviour, [ 1 ] [ 2 ] and is usually defined as excluding time-dependent effects, such as thixotropy .

  9. Newtonian fluid - Wikipedia

    en.wikipedia.org/wiki/Newtonian_fluid

    Other examples include many polymer solutions (which exhibit the Weissenberg effect), molten polymers, many solid suspensions, blood, and most highly viscous fluids. Newtonian fluids are named after Isaac Newton, who first used the differential equation to postulate the relation between the shear strain rate and shear stress for such fluids.