enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Mode (statistics) - Wikipedia

    en.wikipedia.org/wiki/Mode_(statistics)

    In statistics, the mode is the value that appears most often in a set of data values. [1] If X is a discrete random variable, the mode is the value x at which the probability mass function takes its maximum value (i.e., x=argmax x i P(X = x i)). In other words, it is the value that is most likely to be sampled.

  3. Modes of variation - Wikipedia

    en.wikipedia.org/wiki/Modes_of_variation

    In real-world applications, modes of variation associated with eigencomponents allow to interpret complex data, such as the evolution of function traits [5] and other infinite-dimensional data. [6] To illustrate how modes of variation work in practice, two examples are shown in the graphs to the right, which display the first two modes of ...

  4. Normal mode - Wikipedia

    en.wikipedia.org/wiki/Normal_mode

    A mode of vibration is characterized by a modal frequency and a mode shape. It is numbered according to the number of half waves in the vibration. For example, if a vibrating beam with both ends pinned displayed a mode shape of half of a sine wave (one peak on the vibrating beam) it would be vibrating in mode 1.

  5. Triangular distribution - Wikipedia

    en.wikipedia.org/wiki/Triangular_distribution

    This distribution for a = 0, b = 1 and c = 0.5—the mode (i.e., the peak) is exactly in the middle of the interval—corresponds to the distribution of the mean of two standard uniform variables, that is, the distribution of X = (X 1 + X 2) / 2, where X 1, X 2 are two independent random variables with standard uniform distribution in [0, 1]. [1]

  6. Probability density function - Wikipedia

    en.wikipedia.org/wiki/Probability_density_function

    In this example, the ratio (probability of living during an interval) / (duration of the interval) is approximately constant, and equal to 2 per hour (or 2 hour −1). For example, there is 0.02 probability of dying in the 0.01-hour interval between 5 and 5.01 hours, and (0.02 probability / 0.01 hours) = 2 hour −1.

  7. Central tendency - Wikipedia

    en.wikipedia.org/wiki/Central_tendency

    A simple example of this is for the center of nominal data: instead of using the mode (the only single-valued "center"), one often uses the empirical measure (the frequency distribution divided by the sample size) as a "center".

  8. Dynamic mode decomposition - Wikipedia

    en.wikipedia.org/wiki/Dynamic_mode_decomposition

    In data science, dynamic mode decomposition (DMD) is a dimensionality reduction algorithm developed by Peter J. Schmid and Joern Sesterhenn in 2008. [ 1 ] [ 2 ] Given a time series of data, DMD computes a set of modes, each of which is associated with a fixed oscillation frequency and decay/growth rate.

  9. Unimodality - Wikipedia

    en.wikipedia.org/wiki/Unimodality

    The definition of "unimodal" was extended to functions of real numbers as well. A common definition is as follows: a function f(x) is a unimodal function if for some value m, it is monotonically increasing for x ≤ m and monotonically decreasing for x ≥ m. In that case, the maximum value of f(x) is f(m) and there are no other local maxima.