enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Electric field - Wikipedia

    en.wikipedia.org/wiki/Electric_field

    Electric fields originate from electric charges and time-varying electric currents. Electric fields and magnetic fields are both manifestations of the electromagnetic field. Electromagnetism is one of the four fundamental interactions of nature. Electric fields are important in many areas of physics, and are

  3. List of electromagnetism equations - Wikipedia

    en.wikipedia.org/wiki/List_of_electromagnetism...

    Position vector r is a point to calculate the electric field; r′ is a point in the charged object. Contrary to the strong analogy between (classical) gravitation and electrostatics, there are no "centre of charge" or "centre of electrostatic attraction" analogues. [citation needed] Electric transport

  4. Mathematical descriptions of the electromagnetic field

    en.wikipedia.org/wiki/Mathematical_descriptions...

    If only the electric field (E) is non-zero, and is constant in time, the field is said to be an electrostatic field. Similarly, if only the magnetic field (B) is non-zero and is constant in time, the field is said to be a magnetostatic field. However, if either the electric or magnetic field has a time-dependence, then both fields must be ...

  5. Maxwell's equations - Wikipedia

    en.wikipedia.org/wiki/Maxwell's_equations

    Electric field from positive to negative charges. Gauss's law describes the relationship between an electric field and electric charges: an electric field points away from positive charges and towards negative charges, and the net outflow of the electric field through a closed surface is proportional to the enclosed charge, including bound charge due to polarization of material.

  6. Quantization of the electromagnetic field - Wikipedia

    en.wikipedia.org/wiki/Quantization_of_the...

    In Dirac's theory the fields are quantized for the first time and it is also the first time that the Planck constant enters the expressions. In his original work, Dirac took the phases of the different electromagnetic modes ( Fourier components of the field) and the mode energies as dynamic variables to quantize (i.e., he reinterpreted them as ...

  7. Gauss's law - Wikipedia

    en.wikipedia.org/wiki/Gauss's_law

    Gauss's law in its integral form is particularly useful when, by symmetry reasons, a closed surface (GS) can be found along which the electric field is uniform. The electric flux is then a simple product of the surface area and the strength of the electric field, and is proportional to the total charge enclosed by the surface. Here, the ...

  8. Electric-field integral equation - Wikipedia

    en.wikipedia.org/wiki/Electric-field_integral...

    The electric-field integral equation is a relationship that allows the calculation of an electric field (E) generated by an electric current distribution (J).

  9. Coulomb's law - Wikipedia

    en.wikipedia.org/wiki/Coulomb's_law

    An electric field is a vector field that associates to each point in space the Coulomb force experienced by a unit test charge. [19] The strength and direction of the Coulomb force F {\textstyle \mathbf {F} } on a charge q t {\textstyle q_{t}} depends on the electric field E {\textstyle \mathbf {E} } established by other charges that it finds ...